
Bison
The Yacc-compatible Parser Generator
28 December 2002, Bison Version 1.875

by Charles Donnelly and Richard Stallman

This manual is for gnu Bison (version 1.875, 28 December 2002), the gnu parser generator.
Copyright c© 1988, 1989, 1990, 1991, 1992, 1993, 1995, 1998, 1999, 2000, 2001, 2002 Free
Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the gnu Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover texts being “A gnu Manual,” and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“gnu Free Documentation License.”
(a) The fsf’s Back-Cover Text is: “You have freedom to copy and modify
this gnu Manual, like gnu software. Copies published by the Free Software
Foundation raise funds for gnu development.”

Published by the Free Software Foundation
59 Temple Place, Suite 330
Boston, MA 02111-1307 USA
Printed copies are available from the Free Software Foundation.
isbn 1-882114-44-2

Cover art by Etienne Suvasa.

i

Table of Contents

ii Bison 1.875

Introduction 1

Introduction

Bison is a general-purpose parser generator that converts a grammar description for an
lalr(1) context-free grammar into a C program to parse that grammar. Once you are
proficient with Bison, you may use it to develop a wide range of language parsers, from
those used in simple desk calculators to complex programming languages.

Bison is upward compatible with Yacc: all properly-written Yacc grammars ought to
work with Bison with no change. Anyone familiar with Yacc should be able to use Bison
with little trouble. You need to be fluent in C programming in order to use Bison or to
understand this manual.

We begin with tutorial chapters that explain the basic concepts of using Bison and show
three explained examples, each building on the last. If you don’t know Bison or Yacc,
start by reading these chapters. Reference chapters follow which describe specific aspects
of Bison in detail.

Bison was written primarily by Robert Corbett; Richard Stallman made it
Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added multi-character
string literals and other features.

This edition corresponds to version 1.875 of Bison.

2 Bison 1.875

Conditions for Using Bison 3

Conditions for Using Bison

As of Bison version 1.24, we have changed the distribution terms for yyparse to permit
using Bison’s output in nonfree programs when Bison is generating C code for lalr(1)
parsers. Formerly, these parsers could be used only in programs that were free software.

The other gnu programming tools, such as the gnu C compiler, have never had such
a requirement. They could always be used for nonfree software. The reason Bison was
different was not due to a special policy decision; it resulted from applying the usual General
Public License to all of the Bison source code.

The output of the Bison utility—the Bison parser file—contains a verbatim copy of a
sizable piece of Bison, which is the code for the yyparse function. (The actions from your
grammar are inserted into this function at one point, but the rest of the function is not
changed.) When we applied the gpl terms to the code for yyparse, the effect was to restrict
the use of Bison output to free software.

We didn’t change the terms because of sympathy for people who want to make software
proprietary. Software should be free. But we concluded that limiting Bison’s use to free
software was doing little to encourage people to make other software free. So we decided to
make the practical conditions for using Bison match the practical conditions for using the
other gnu tools.

This exception applies only when Bison is generating C code for a lalr(1) parser;
otherwise, the gpl terms operate as usual. You can tell whether the exception applies to
your ‘.c’ output file by inspecting it to see whether it says “As a special exception, when
this file is copied by Bison into a Bison output file, you may use that output file without
restriction.”

4 Bison 1.875

GNU GENERAL PUBLIC LICENSE 5

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

6 Bison 1.875

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions

GNU GENERAL PUBLIC LICENSE 7

for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:
a. Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you

8 Bison 1.875

indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.
If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

GNU GENERAL PUBLIC LICENSE 9

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

10 Bison 1.875

Appendix: How to Apply These Terms to Your New
Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an

interactive mode:
Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit

GNU GENERAL PUBLIC LICENSE 11

linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

12 Bison 1.875

Chapter 1: The Concepts of Bison 13

1 The Concepts of Bison

This chapter introduces many of the basic concepts without which the details of Bison
will not make sense. If you do not already know how to use Bison or Yacc, we suggest you
start by reading this chapter carefully.

1.1 Languages and Context-Free Grammars

In order for Bison to parse a language, it must be described by a context-free grammar.
This means that you specify one or more syntactic groupings and give rules for constructing
them from their parts. For example, in the C language, one kind of grouping is called an
‘expression’. One rule for making an expression might be, “An expression can be made of a
minus sign and another expression”. Another would be, “An expression can be an integer”.
As you can see, rules are often recursive, but there must be at least one rule which leads
out of the recursion.

The most common formal system for presenting such rules for humans to read is Backus-
Naur Form or “bnf”, which was developed in order to specify the language Algol 60. Any
grammar expressed in bnf is a context-free grammar. The input to Bison is essentially
machine-readable bnf.

There are various important subclasses of context-free grammar. Although it can handle
almost all context-free grammars, Bison is optimized for what are called lalr(1) grammars.
In brief, in these grammars, it must be possible to tell how to parse any portion of an input
string with just a single token of look-ahead. Strictly speaking, that is a description of an
lr(1) grammar, and lalr(1) involves additional restrictions that are hard to explain simply;
but it is rare in actual practice to find an lr(1) grammar that fails to be lalr(1). See 〈un-
defined〉 [Mysterious Reduce/Reduce Conflicts], page 〈undefined〉, for more information on
this.

Parsers for lalr(1) grammars are deterministic, meaning roughly that the next grammar
rule to apply at any point in the input is uniquely determined by the preceding input and a
fixed, finite portion (called a look-ahead) of the remaining input. A context-free grammar
can be ambiguous, meaning that there are multiple ways to apply the grammar rules to get
the some inputs. Even unambiguous grammars can be non-deterministic, meaning that no
fixed look-ahead always suffices to determine the next grammar rule to apply. With the
proper declarations, Bison is also able to parse these more general context-free grammars,
using a technique known as glr parsing (for Generalized lr). Bison’s glr parsers are able
to handle any context-free grammar for which the number of possible parses of any given
string is finite.

In the formal grammatical rules for a language, each kind of syntactic unit or grouping
is named by a symbol. Those which are built by grouping smaller constructs according
to grammatical rules are called nonterminal symbols; those which can’t be subdivided
are called terminal symbols or token types. We call a piece of input corresponding to a
single terminal symbol a token, and a piece corresponding to a single nonterminal symbol
a grouping.

We can use the C language as an example of what symbols, terminal and nonterminal,
mean. The tokens of C are identifiers, constants (numeric and string), and the various key-
words, arithmetic operators and punctuation marks. So the terminal symbols of a grammar

14 Bison 1.875

for C include ‘identifier’, ‘number’, ‘string’, plus one symbol for each keyword, operator
or punctuation mark: ‘if’, ‘return’, ‘const’, ‘static’, ‘int’, ‘char’, ‘plus-sign’, ‘open-brace’,
‘close-brace’, ‘comma’ and many more. (These tokens can be subdivided into characters,
but that is a matter of lexicography, not grammar.)

Here is a simple C function subdivided into tokens:
int /* keyword ‘int’ */
square (int x) /* identifier, open-paren, identifier, identifier, close-paren */
{ /* open-brace */
return x * x; /* keyword ‘return’, identifier, asterisk, identifier, semicolon */

} /* close-brace */

The syntactic groupings of C include the expression, the statement, the declaration,
and the function definition. These are represented in the grammar of C by nonterminal
symbols ‘expression’, ‘statement’, ‘declaration’ and ‘function definition’. The full grammar
uses dozens of additional language constructs, each with its own nonterminal symbol, in
order to express the meanings of these four. The example above is a function definition;
it contains one declaration, and one statement. In the statement, each ‘x’ is an expression
and so is ‘x * x’.

Each nonterminal symbol must have grammatical rules showing how it is made out of
simpler constructs. For example, one kind of C statement is the return statement; this
would be described with a grammar rule which reads informally as follows:

A ‘statement’ can be made of a ‘return’ keyword, an ‘expression’ and a ‘semi-
colon’.

There would be many other rules for ‘statement’, one for each kind of statement in C.
One nonterminal symbol must be distinguished as the special one which defines a com-

plete utterance in the language. It is called the start symbol. In a compiler, this means a
complete input program. In the C language, the nonterminal symbol ‘sequence of definitions
and declarations’ plays this role.

For example, ‘1 + 2’ is a valid C expression—a valid part of a C program—but it is not
valid as an entire C program. In the context-free grammar of C, this follows from the fact
that ‘expression’ is not the start symbol.

The Bison parser reads a sequence of tokens as its input, and groups the tokens using the
grammar rules. If the input is valid, the end result is that the entire token sequence reduces
to a single grouping whose symbol is the grammar’s start symbol. If we use a grammar for
C, the entire input must be a ‘sequence of definitions and declarations’. If not, the parser
reports a syntax error.

1.2 From Formal Rules to Bison Input

A formal grammar is a mathematical construct. To define the language for Bison, you
must write a file expressing the grammar in Bison syntax: a Bison grammar file. See
〈undefined〉 [Bison Grammar Files], page 〈undefined〉.

A nonterminal symbol in the formal grammar is represented in Bison input as an iden-
tifier, like an identifier in C. By convention, it should be in lower case, such as expr, stmt
or declaration.

Chapter 1: The Concepts of Bison 15

The Bison representation for a terminal symbol is also called a token type. Token types
as well can be represented as C-like identifiers. By convention, these identifiers should be
upper case to distinguish them from nonterminals: for example, INTEGER, IDENTIFIER,
IF or RETURN. A terminal symbol that stands for a particular keyword in the language
should be named after that keyword converted to upper case. The terminal symbol error
is reserved for error recovery. See 〈undefined〉 [Symbols], page 〈undefined〉.

A terminal symbol can also be represented as a character literal, just like a C character
constant. You should do this whenever a token is just a single character (parenthesis,
plus-sign, etc.): use that same character in a literal as the terminal symbol for that token.

A third way to represent a terminal symbol is with a C string constant containing several
characters. See 〈undefined〉 [Symbols], page 〈undefined〉, for more information.

The grammar rules also have an expression in Bison syntax. For example, here is the
Bison rule for a C return statement. The semicolon in quotes is a literal character token,
representing part of the C syntax for the statement; the naked semicolon, and the colon,
are Bison punctuation used in every rule.

stmt: RETURN expr ’;’
;

See 〈undefined〉 [Syntax of Grammar Rules], page 〈undefined〉.

1.3 Semantic Values

A formal grammar selects tokens only by their classifications: for example, if a rule
mentions the terminal symbol ‘integer constant’, it means that any integer constant is
grammatically valid in that position. The precise value of the constant is irrelevant to how
to parse the input: if ‘x+4’ is grammatical then ‘x+1’ or ‘x+3989’ is equally grammatical.

But the precise value is very important for what the input means once it is parsed.
A compiler is useless if it fails to distinguish between 4, 1 and 3989 as constants in the
program! Therefore, each token in a Bison grammar has both a token type and a semantic
value. See 〈undefined〉 [Defining Language Semantics], page 〈undefined〉, for details.

The token type is a terminal symbol defined in the grammar, such as INTEGER,
IDENTIFIER or ’,’. It tells everything you need to know to decide where the token may
validly appear and how to group it with other tokens. The grammar rules know nothing
about tokens except their types.

The semantic value has all the rest of the information about the meaning of the token,
such as the value of an integer, or the name of an identifier. (A token such as ’,’ which is
just punctuation doesn’t need to have any semantic value.)

For example, an input token might be classified as token type INTEGER and have the
semantic value 4. Another input token might have the same token type INTEGER but
value 3989. When a grammar rule says that INTEGER is allowed, either of these tokens is
acceptable because each is an INTEGER. When the parser accepts the token, it keeps track
of the token’s semantic value.

Each grouping can also have a semantic value as well as its nonterminal symbol. For
example, in a calculator, an expression typically has a semantic value that is a number. In
a compiler for a programming language, an expression typically has a semantic value that
is a tree structure describing the meaning of the expression.

16 Bison 1.875

1.4 Semantic Actions

In order to be useful, a program must do more than parse input; it must also produce
some output based on the input. In a Bison grammar, a grammar rule can have an action
made up of C statements. Each time the parser recognizes a match for that rule, the action
is executed. See 〈undefined〉 [Actions], page 〈undefined〉.

Most of the time, the purpose of an action is to compute the semantic value of the whole
construct from the semantic values of its parts. For example, suppose we have a rule which
says an expression can be the sum of two expressions. When the parser recognizes such a
sum, each of the subexpressions has a semantic value which describes how it was built up.
The action for this rule should create a similar sort of value for the newly recognized larger
expression.

For example, here is a rule that says an expression can be the sum of two subexpressions:
expr: expr ’+’ expr { $$ = $1 + $3; }

;

The action says how to produce the semantic value of the sum expression from the values
of the two subexpressions.

1.5 Writing glr Parsers

In some grammars, there will be cases where Bison’s standard lalr(1) parsing algo-
rithm cannot decide whether to apply a certain grammar rule at a given point. That is,
it may not be able to decide (on the basis of the input read so far) which of two possible
reductions (applications of a grammar rule) applies, or whether to apply a reduction or
read more of the input and apply a reduction later in the input. These are known respec-
tively as reduce/reduce conflicts (see 〈undefined〉 [Reduce/Reduce], page 〈undefined〉), and
shift/reduce conflicts (see 〈undefined〉 [Shift/Reduce], page 〈undefined〉).

To use a grammar that is not easily modified to be lalr(1), a more general parsing
algorithm is sometimes necessary. If you include %glr-parser among the Bison declara-
tions in your file (see 〈undefined〉 [Grammar Outline], page 〈undefined〉), the result will be
a Generalized lr (glr) parser. These parsers handle Bison grammars that contain no unre-
solved conflicts (i.e., after applying precedence declarations) identically to lalr(1) parsers.
However, when faced with unresolved shift/reduce and reduce/reduce conflicts, glr parsers
use the simple expedient of doing both, effectively cloning the parser to follow both possi-
bilities. Each of the resulting parsers can again split, so that at any given time, there can
be any number of possible parses being explored. The parsers proceed in lockstep; that is,
all of them consume (shift) a given input symbol before any of them proceed to the next.
Each of the cloned parsers eventually meets one of two possible fates: either it runs into a
parsing error, in which case it simply vanishes, or it merges with another parser, because
the two of them have reduced the input to an identical set of symbols.

During the time that there are multiple parsers, semantic actions are recorded, but not
performed. When a parser disappears, its recorded semantic actions disappear as well, and
are never performed. When a reduction makes two parsers identical, causing them to merge,
Bison records both sets of semantic actions. Whenever the last two parsers merge, reverting
to the single-parser case, Bison resolves all the outstanding actions either by precedences

Chapter 1: The Concepts of Bison 17

given to the grammar rules involved, or by performing both actions, and then calling a
designated user-defined function on the resulting values to produce an arbitrary merged
result.

Let’s consider an example, vastly simplified from a C++ grammar.

%{
#include <stdio.h>
#define YYSTYPE char const *
int yylex (void);
void yyerror (char const *);

%}

%token TYPENAME ID

%right ’=’
%left ’+’

%glr-parser

%%

prog :
| prog stmt { printf ("\n"); }
;

stmt : expr ’;’ %dprec 1
| decl %dprec 2
;

expr : ID { printf ("%s ", $$); }
| TYPENAME ’(’ expr ’)’

{ printf ("%s <cast> ", $1); }
| expr ’+’ expr { printf ("+ "); }
| expr ’=’ expr { printf ("= "); }
;

decl : TYPENAME declarator ’;’
{ printf ("%s <declare> ", $1); }

| TYPENAME declarator ’=’ expr ’;’
{ printf ("%s <init-declare> ", $1); }

;

declarator : ID { printf ("\"%s\" ", $1); }
| ’(’ declarator ’)’
;

This models a problematic part of the C++ grammar—the ambiguity between certain dec-
larations and statements. For example,

18 Bison 1.875

T (x) = y+z;

parses as either an expr or a stmt (assuming that ‘T’ is recognized as a TYPENAME and ‘x’
as an ID). Bison detects this as a reduce/reduce conflict between the rules expr : ID and
declarator : ID, which it cannot resolve at the time it encounters x in the example above.
The two %dprec declarations, however, give precedence to interpreting the example as a
decl, which implies that x is a declarator. The parser therefore prints

"x" y z + T <init-declare>

Consider a different input string for this parser:
T (x) + y;

Here, there is no ambiguity (this cannot be parsed as a declaration). However, at the
time the Bison parser encounters x, it does not have enough information to resolve the
reduce/reduce conflict (again, between x as an expr or a declarator). In this case, no
precedence declaration is used. Instead, the parser splits into two, one assuming that x
is an expr, and the other assuming x is a declarator. The second of these parsers then
vanishes when it sees +, and the parser prints

x T <cast> y +

Suppose that instead of resolving the ambiguity, you wanted to see all the possibilities.
For this purpose, we must merge the semantic actions of the two possible parsers, rather
than choosing one over the other. To do so, you could change the declaration of stmt as
follows:

stmt : expr ’;’ %merge <stmtMerge>
| decl %merge <stmtMerge>
;

and define the stmtMerge function as:
static YYSTYPE
stmtMerge (YYSTYPE x0, YYSTYPE x1)
{
printf ("<OR> ");
return "";

}

with an accompanying forward declaration in the C declarations at the beginning of the
file:

%{
#define YYSTYPE char const *
static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);

%}

With these declarations, the resulting parser will parse the first example as both an expr
and a decl, and print

"x" y z + T <init-declare> x T <cast> y z + = <OR>

The glr parsers require a compiler for iso C89 or later. In addition, they use the inline
keyword, which is not C89, but is C99 and is a common extension in pre-C99 compilers. It

Chapter 1: The Concepts of Bison 19

is up to the user of these parsers to handle portability issues. For instance, if using Autoconf
and the Autoconf macro AC_C_INLINE, a mere

%{
#include <config.h>

%}

will suffice. Otherwise, we suggest
%{
#if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
#define inline
#endif

%}

1.6 Locations

Many applications, like interpreters or compilers, have to produce verbose and useful
error messages. To achieve this, one must be able to keep track of the textual position,
or location, of each syntactic construct. Bison provides a mechanism for handling these
locations.

Each token has a semantic value. In a similar fashion, each token has an associated
location, but the type of locations is the same for all tokens and groupings. Moreover, the
output parser is equipped with a default data structure for storing locations (see 〈undefined〉
[Locations], page 〈undefined〉, for more details).

Like semantic values, locations can be reached in actions using a dedicated set of con-
structs. In the example above, the location of the whole grouping is @$, while the locations
of the subexpressions are @1 and @3.

When a rule is matched, a default action is used to compute the semantic value of its left
hand side (see 〈undefined〉 [Actions], page 〈undefined〉). In the same way, another default
action is used for locations. However, the action for locations is general enough for most
cases, meaning there is usually no need to describe for each rule how @$ should be formed.
When building a new location for a given grouping, the default behavior of the output
parser is to take the beginning of the first symbol, and the end of the last symbol.

1.7 Bison Output: the Parser File

When you run Bison, you give it a Bison grammar file as input. The output is a C
source file that parses the language described by the grammar. This file is called a Bison
parser. Keep in mind that the Bison utility and the Bison parser are two distinct programs:
the Bison utility is a program whose output is the Bison parser that becomes part of your
program.

The job of the Bison parser is to group tokens into groupings according to the grammar
rules—for example, to build identifiers and operators into expressions. As it does this, it
runs the actions for the grammar rules it uses.

The tokens come from a function called the lexical analyzer that you must supply in some
fashion (such as by writing it in C). The Bison parser calls the lexical analyzer each time it

20 Bison 1.875

wants a new token. It doesn’t know what is “inside” the tokens (though their semantic values
may reflect this). Typically the lexical analyzer makes the tokens by parsing characters of
text, but Bison does not depend on this. See 〈undefined〉 [The Lexical Analyzer Function
yylex], page 〈undefined〉.

The Bison parser file is C code which defines a function named yyparse which implements
that grammar. This function does not make a complete C program: you must supply some
additional functions. One is the lexical analyzer. Another is an error-reporting function
which the parser calls to report an error. In addition, a complete C program must start
with a function called main; you have to provide this, and arrange for it to call yyparse or
the parser will never run. See 〈undefined〉 [Parser C-Language Interface], page 〈undefined〉.

Aside from the token type names and the symbols in the actions you write, all symbols
defined in the Bison parser file itself begin with ‘yy’ or ‘YY’. This includes interface functions
such as the lexical analyzer function yylex, the error reporting function yyerror and the
parser function yyparse itself. This also includes numerous identifiers used for internal
purposes. Therefore, you should avoid using C identifiers starting with ‘yy’ or ‘YY’ in the
Bison grammar file except for the ones defined in this manual.

In some cases the Bison parser file includes system headers, and in those cases your
code should respect the identifiers reserved by those headers. On some non-gnu hosts,
<alloca.h>, <stddef.h>, and <stdlib.h> are included as needed to declare memory allo-
cators and related types. Other system headers may be included if you define YYDEBUG to
a nonzero value (see 〈undefined〉 [Tracing Your Parser], page 〈undefined〉).

1.8 Stages in Using Bison

The actual language-design process using Bison, from grammar specification to a working
compiler or interpreter, has these parts:

1. Formally specify the grammar in a form recognized by Bison (see 〈undefined〉 [Bison
Grammar Files], page 〈undefined〉). For each grammatical rule in the language, describe
the action that is to be taken when an instance of that rule is recognized. The action
is described by a sequence of C statements.

2. Write a lexical analyzer to process input and pass tokens to the parser. The lexical
analyzer may be written by hand in C (see 〈undefined〉 [The Lexical Analyzer Function
yylex], page 〈undefined〉). It could also be produced using Lex, but the use of Lex is
not discussed in this manual.

3. Write a controlling function that calls the Bison-produced parser.

4. Write error-reporting routines.

To turn this source code as written into a runnable program, you must follow these steps:

1. Run Bison on the grammar to produce the parser.

2. Compile the code output by Bison, as well as any other source files.

3. Link the object files to produce the finished product.

Chapter 1: The Concepts of Bison 21

1.9 The Overall Layout of a Bison Grammar

The input file for the Bison utility is a Bison grammar file. The general form of a Bison
grammar file is as follows:

%{
Prologue

%}

Bison declarations

%%
Grammar rules

%%
Epilogue

The ‘%%’, ‘%{’ and ‘%}’ are punctuation that appears in every Bison grammar file to separate
the sections.

The prologue may define types and variables used in the actions. You can also use
preprocessor commands to define macros used there, and use #include to include header
files that do any of these things. You need to declare the lexical analyzer yylex and the
error printer yyerror here, along with any other global identifiers used by the actions in
the grammar rules.

The Bison declarations declare the names of the terminal and nonterminal symbols, and
may also describe operator precedence and the data types of semantic values of various
symbols.

The grammar rules define how to construct each nonterminal symbol from its parts.
The epilogue can contain any code you want to use. Often the definitions of functions

declared in the prologue go here. In a simple program, all the rest of the program can go
here.

22 Bison 1.875

Chapter 2: Examples 23

2 Examples

Now we show and explain three sample programs written using Bison: a reverse polish
notation calculator, an algebraic (infix) notation calculator, and a multi-function calculator.
All three have been tested under BSD Unix 4.3; each produces a usable, though limited,
interactive desk-top calculator.

These examples are simple, but Bison grammars for real programming languages are
written the same way.

2.1 Reverse Polish Notation Calculator

The first example is that of a simple double-precision reverse polish notation calcula-
tor (a calculator using postfix operators). This example provides a good starting point,
since operator precedence is not an issue. The second example will illustrate how operator
precedence is handled.

The source code for this calculator is named ‘rpcalc.y’. The ‘.y’ extension is a con-
vention used for Bison input files.

2.1.1 Declarations for rpcalc

Here are the C and Bison declarations for the reverse polish notation calculator. As in
C, comments are placed between ‘/*...*/’.

/* Reverse polish notation calculator. */

%{
#define YYSTYPE double
#include <math.h>
int yylex (void);
void yyerror (char const *);

%}

%token NUM

%% /* Grammar rules and actions follow. */

The declarations section (see 〈undefined〉 [The prologue], page 〈undefined〉) contains two
preprocessor directives and two forward declarations.

The #define directive defines the macro YYSTYPE, thus specifying the C data type for
semantic values of both tokens and groupings (see 〈undefined〉 [Data Types of Semantic
Values], page 〈undefined〉). The Bison parser will use whatever type YYSTYPE is defined as;
if you don’t define it, int is the default. Because we specify double, each token and each
expression has an associated value, which is a floating point number.

The #include directive is used to declare the exponentiation function pow.
The forward declarations for yylex and yyerror are needed because the C language

requires that functions be declared before they are used. These functions will be defined in
the epilogue, but the parser calls them so they must be declared in the prologue.

24 Bison 1.875

The second section, Bison declarations, provides information to Bison about the token
types (see 〈undefined〉 [The Bison Declarations Section], page 〈undefined〉). Each terminal
symbol that is not a single-character literal must be declared here. (Single-character literals
normally don’t need to be declared.) In this example, all the arithmetic operators are
designated by single-character literals, so the only terminal symbol that needs to be declared
is NUM, the token type for numeric constants.

2.1.2 Grammar Rules for rpcalc

Here are the grammar rules for the reverse polish notation calculator.

input: /* empty */
| input line

;

line: ’\n’
| exp ’\n’ { printf ("\t%.10g\n", $1); }

;

exp: NUM { $$ = $1; }
| exp exp ’+’ { $$ = $1 + $2; }
| exp exp ’-’ { $$ = $1 - $2; }
| exp exp ’*’ { $$ = $1 * $2; }
| exp exp ’/’ { $$ = $1 / $2; }
/* Exponentiation */
| exp exp ’^’ { $$ = pow ($1, $2); }
/* Unary minus */
| exp ’n’ { $$ = -$1; }

;
%%

The groupings of the rpcalc “language” defined here are the expression (given the name
exp), the line of input (line), and the complete input transcript (input). Each of these
nonterminal symbols has several alternate rules, joined by the ‘|’ punctuator which is read
as “or”. The following sections explain what these rules mean.

The semantics of the language is determined by the actions taken when a grouping
is recognized. The actions are the C code that appears inside braces. See 〈undefined〉
[Actions], page 〈undefined〉.

You must specify these actions in C, but Bison provides the means for passing semantic
values between the rules. In each action, the pseudo-variable $$ stands for the semantic
value for the grouping that the rule is going to construct. Assigning a value to $$ is the
main job of most actions. The semantic values of the components of the rule are referred
to as $1, $2, and so on.

2.1.2.1 Explanation of input

Consider the definition of input:

Chapter 2: Examples 25

input: /* empty */
| input line

;

This definition reads as follows: “A complete input is either an empty string, or a
complete input followed by an input line”. Notice that “complete input” is defined in terms
of itself. This definition is said to be left recursive since input appears always as the
leftmost symbol in the sequence. See 〈undefined〉 [Recursive Rules], page 〈undefined〉.

The first alternative is empty because there are no symbols between the colon and the
first ‘|’; this means that input can match an empty string of input (no tokens). We write
the rules this way because it is legitimate to type Ctrl-d right after you start the calculator.
It’s conventional to put an empty alternative first and write the comment ‘/* empty */’ in
it.

The second alternate rule (input line) handles all nontrivial input. It means, “After
reading any number of lines, read one more line if possible.” The left recursion makes this
rule into a loop. Since the first alternative matches empty input, the loop can be executed
zero or more times.

The parser function yyparse continues to process input until a grammatical error is seen
or the lexical analyzer says there are no more input tokens; we will arrange for the latter
to happen at end-of-input.

2.1.2.2 Explanation of line

Now consider the definition of line:
line: ’\n’

| exp ’\n’ { printf ("\t%.10g\n", $1); }
;

The first alternative is a token which is a newline character; this means that rpcalc
accepts a blank line (and ignores it, since there is no action). The second alternative is
an expression followed by a newline. This is the alternative that makes rpcalc useful. The
semantic value of the exp grouping is the value of $1 because the exp in question is the
first symbol in the alternative. The action prints this value, which is the result of the
computation the user asked for.

This action is unusual because it does not assign a value to $$. As a consequence, the
semantic value associated with the line is uninitialized (its value will be unpredictable).
This would be a bug if that value were ever used, but we don’t use it: once rpcalc has
printed the value of the user’s input line, that value is no longer needed.

2.1.2.3 Explanation of expr

The exp grouping has several rules, one for each kind of expression. The first rule
handles the simplest expressions: those that are just numbers. The second handles an
addition-expression, which looks like two expressions followed by a plus-sign. The third
handles subtraction, and so on.

exp: NUM
| exp exp ’+’ { $$ = $1 + $2; }

26 Bison 1.875

| exp exp ’-’ { $$ = $1 - $2; }
...
;

We have used ‘|’ to join all the rules for exp, but we could equally well have written
them separately:

exp: NUM ;
exp: exp exp ’+’ { $$ = $1 + $2; } ;
exp: exp exp ’-’ { $$ = $1 - $2; } ;

...

Most of the rules have actions that compute the value of the expression in terms of the
value of its parts. For example, in the rule for addition, $1 refers to the first component exp
and $2 refers to the second one. The third component, ’+’, has no meaningful associated
semantic value, but if it had one you could refer to it as $3. When yyparse recognizes a
sum expression using this rule, the sum of the two subexpressions’ values is produced as
the value of the entire expression. See 〈undefined〉 [Actions], page 〈undefined〉.

You don’t have to give an action for every rule. When a rule has no action, Bison by
default copies the value of $1 into $$. This is what happens in the first rule (the one that
uses NUM).

The formatting shown here is the recommended convention, but Bison does not require
it. You can add or change white space as much as you wish. For example, this:

exp : NUM | exp exp ’+’ {$$ = $1 + $2; } | ...

means the same thing as this:

exp: NUM
| exp exp ’+’ { $$ = $1 + $2; }
| ...

The latter, however, is much more readable.

2.1.3 The rpcalc Lexical Analyzer

The lexical analyzer’s job is low-level parsing: converting characters or sequences of
characters into tokens. The Bison parser gets its tokens by calling the lexical analyzer. See
〈undefined〉 [The Lexical Analyzer Function yylex], page 〈undefined〉.

Only a simple lexical analyzer is needed for the rpn calculator. This lexical analyzer
skips blanks and tabs, then reads in numbers as double and returns them as NUM tokens.
Any other character that isn’t part of a number is a separate token. Note that the token-
code for such a single-character token is the character itself.

The return value of the lexical analyzer function is a numeric code which represents
a token type. The same text used in Bison rules to stand for this token type is also a
C expression for the numeric code for the type. This works in two ways. If the token
type is a character literal, then its numeric code is that of the character; you can use the
same character literal in the lexical analyzer to express the number. If the token type is an
identifier, that identifier is defined by Bison as a C macro whose definition is the appropriate
number. In this example, therefore, NUM becomes a macro for yylex to use.

Chapter 2: Examples 27

The semantic value of the token (if it has one) is stored into the global variable yylval,
which is where the Bison parser will look for it. (The C data type of yylval is YYSTYPE,
which was defined at the beginning of the grammar; see 〈undefined〉 [Declarations for
rpcalc], page 〈undefined〉.)

A token type code of zero is returned if the end-of-input is encountered. (Bison recognizes
any nonpositive value as indicating end-of-input.)

Here is the code for the lexical analyzer:

/* The lexical analyzer returns a double floating point
number on the stack and the token NUM, or the numeric code
of the character read if not a number. It skips all blanks
and tabs, and returns 0 for end-of-input. */

#include <ctype.h>

int
yylex (void)
{
int c;

/* Skip white space. */
while ((c = getchar ()) == ’ ’ || c == ’\t’)

;

/* Process numbers. */
if (c == ’.’ || isdigit (c))

{
ungetc (c, stdin);
scanf ("%lf", &yylval);
return NUM;

}

/* Return end-of-input. */
if (c == EOF)

return 0;
/* Return a single char. */
return c;

}

2.1.4 The Controlling Function

In keeping with the spirit of this example, the controlling function is kept to the bare
minimum. The only requirement is that it call yyparse to start the process of parsing.

int
main (void)
{
return yyparse ();

}

28 Bison 1.875

2.1.5 The Error Reporting Routine

When yyparse detects a syntax error, it calls the error reporting function yyerror to
print an error message (usually but not always "syntax error"). It is up to the programmer
to supply yyerror (see 〈undefined〉 [Parser C-Language Interface], page 〈undefined〉), so
here is the definition we will use:

#include <stdio.h>

/* Called by yyparse on error. */
void
yyerror (char const *s)
{

printf ("%s\n", s);
}

After yyerror returns, the Bison parser may recover from the error and continue parsing
if the grammar contains a suitable error rule (see 〈undefined〉 [Error Recovery], page 〈un-
defined〉). Otherwise, yyparse returns nonzero. We have not written any error rules in this
example, so any invalid input will cause the calculator program to exit. This is not clean
behavior for a real calculator, but it is adequate for the first example.

2.1.6 Running Bison to Make the Parser

Before running Bison to produce a parser, we need to decide how to arrange all the
source code in one or more source files. For such a simple example, the easiest thing is to
put everything in one file. The definitions of yylex, yyerror and main go at the end, in the
epilogue of the file (see 〈undefined〉 [The Overall Layout of a Bison Grammar], page 〈unde-
fined〉).

For a large project, you would probably have several source files, and use make to arrange
to recompile them.

With all the source in a single file, you use the following command to convert it into a
parser file:

bison file_name.y

In this example the file was called ‘rpcalc.y’ (for “Reverse Polish calculator”). Bison
produces a file named ‘file_name.tab.c’, removing the ‘.y’ from the original file name.
The file output by Bison contains the source code for yyparse. The additional functions in
the input file (yylex, yyerror and main) are copied verbatim to the output.

2.1.7 Compiling the Parser File

Here is how to compile and run the parser file:

List files in current directory.
$ ls

rpcalc.tab.c rpcalc.y

Chapter 2: Examples 29

Compile the Bison parser.
‘-lm’ tells compiler to search math library for pow.
$ cc -lm -o rpcalc rpcalc.tab.c

List files again.
$ ls

rpcalc rpcalc.tab.c rpcalc.y

The file ‘rpcalc’ now contains the executable code. Here is an example session using
rpcalc.

$ rpcalc

4 9 +
13
3 7 + 3 4 5 *+-
-13
3 7 + 3 4 5 * + - n Note the unary minus, ‘n’
13
5 6 / 4 n +
-3.166666667
3 4 ^ Exponentiation
81
^D End-of-file indicator
$

2.2 Infix Notation Calculator: calc

We now modify rpcalc to handle infix operators instead of postfix. Infix notation involves
the concept of operator precedence and the need for parentheses nested to arbitrary depth.
Here is the Bison code for ‘calc.y’, an infix desk-top calculator.

/* Infix notation calculator. */

%{
#define YYSTYPE double
#include <math.h>
#include <stdio.h>
int yylex (void);
void yyerror (char const *);

%}

/* Bison declarations. */
%token NUM
%left ’-’ ’+’
%left ’*’ ’/’
%left NEG /* negation--unary minus */
%right ’^’ /* exponentiation */

%% /* The grammar follows. */

30 Bison 1.875

input: /* empty */
| input line

;

line: ’\n’
| exp ’\n’ { printf ("\t%.10g\n", $1); }

;

exp: NUM { $$ = $1; }
| exp ’+’ exp { $$ = $1 + $3; }
| exp ’-’ exp { $$ = $1 - $3; }
| exp ’*’ exp { $$ = $1 * $3; }
| exp ’/’ exp { $$ = $1 / $3; }
| ’-’ exp %prec NEG { $$ = -$2; }
| exp ’^’ exp { $$ = pow ($1, $3); }
| ’(’ exp ’)’ { $$ = $2; }

;
%%

The functions yylex, yyerror and main can be the same as before.

There are two important new features shown in this code.

In the second section (Bison declarations), %left declares token types and says they are
left-associative operators. The declarations %left and %right (right associativity) take the
place of %token which is used to declare a token type name without associativity. (These
tokens are single-character literals, which ordinarily don’t need to be declared. We declare
them here to specify the associativity.)

Operator precedence is determined by the line ordering of the declarations; the higher
the line number of the declaration (lower on the page or screen), the higher the precedence.
Hence, exponentiation has the highest precedence, unary minus (NEG) is next, followed by
‘*’ and ‘/’, and so on. See 〈undefined〉 [Operator Precedence], page 〈undefined〉.

The other important new feature is the %prec in the grammar section for the unary
minus operator. The %prec simply instructs Bison that the rule ‘| ’-’ exp’ has the same
precedence as NEG—in this case the next-to-highest. See 〈undefined〉 [Context-Dependent
Precedence], page 〈undefined〉.

Here is a sample run of ‘calc.y’:
$ calc

4 + 4.5 - (34/(8*3+-3))
6.880952381
-56 + 2

-54
3 ^ 2

9

Chapter 2: Examples 31

2.3 Simple Error Recovery

Up to this point, this manual has not addressed the issue of error recovery—how to
continue parsing after the parser detects a syntax error. All we have handled is error
reporting with yyerror. Recall that by default yyparse returns after calling yyerror.
This means that an erroneous input line causes the calculator program to exit. Now we
show how to rectify this deficiency.

The Bison language itself includes the reserved word error, which may be included in
the grammar rules. In the example below it has been added to one of the alternatives for
line:

line: ’\n’
| exp ’\n’ { printf ("\t%.10g\n", $1); }
| error ’\n’ { yyerrok; }

;

This addition to the grammar allows for simple error recovery in the event of a syntax
error. If an expression that cannot be evaluated is read, the error will be recognized by the
third rule for line, and parsing will continue. (The yyerror function is still called upon
to print its message as well.) The action executes the statement yyerrok, a macro defined
automatically by Bison; its meaning is that error recovery is complete (see 〈undefined〉
[Error Recovery], page 〈undefined〉). Note the difference between yyerrok and yyerror;
neither one is a misprint.

This form of error recovery deals with syntax errors. There are other kinds of errors; for
example, division by zero, which raises an exception signal that is normally fatal. A real
calculator program must handle this signal and use longjmp to return to main and resume
parsing input lines; it would also have to discard the rest of the current line of input. We
won’t discuss this issue further because it is not specific to Bison programs.

2.4 Location Tracking Calculator: ltcalc

This example extends the infix notation calculator with location tracking. This feature
will be used to improve the error messages. For the sake of clarity, this example is a simple
integer calculator, since most of the work needed to use locations will be done in the lexical
analyzer.

2.4.1 Declarations for ltcalc

The C and Bison declarations for the location tracking calculator are the same as the
declarations for the infix notation calculator.

/* Location tracking calculator. */

%{
#define YYSTYPE int
#include <math.h>
int yylex (void);
void yyerror (char const *);

32 Bison 1.875

%}

/* Bison declarations. */
%token NUM

%left ’-’ ’+’
%left ’*’ ’/’
%left NEG
%right ’^’

%% /* The grammar follows. */

Note there are no declarations specific to locations. Defining a data type for storing locations
is not needed: we will use the type provided by default (see 〈undefined〉 [Data Types of
Locations], page 〈undefined〉), which is a four member structure with the following integer
fields: first_line, first_column, last_line and last_column.

2.4.2 Grammar Rules for ltcalc

Whether handling locations or not has no effect on the syntax of your language. There-
fore, grammar rules for this example will be very close to those of the previous example:
we will only modify them to benefit from the new information.

Here, we will use locations to report divisions by zero, and locate the wrong expressions
or subexpressions.

input : /* empty */
| input line

;

line : ’\n’
| exp ’\n’ { printf ("%d\n", $1); }

;

exp : NUM { $$ = $1; }
| exp ’+’ exp { $$ = $1 + $3; }
| exp ’-’ exp { $$ = $1 - $3; }
| exp ’*’ exp { $$ = $1 * $3; }

| exp ’/’ exp
{

if ($3)
$$ = $1 / $3;

else
{
$$ = 1;
fprintf (stderr, "%d.%d-%d.%d: division by zero",

@3.first_line, @3.first_column,
@3.last_line, @3.last_column);

}
}

Chapter 2: Examples 33

| ’-’ exp %preg NEG { $$ = -$2; }
| exp ’^’ exp { $$ = pow ($1, $3); }
| ’(’ exp ’)’ { $$ = $2; }

This code shows how to reach locations inside of semantic actions, by using the pseudo-
variables @n for rule components, and the pseudo-variable @$ for groupings.

We don’t need to assign a value to @$: the output parser does it automatically. By
default, before executing the C code of each action, @$ is set to range from the beginning
of @1 to the end of @n , for a rule with n components. This behavior can be redefined (see
〈undefined〉 [Default Action for Locations], page 〈undefined〉), and for very specific rules,
@$ can be computed by hand.

2.4.3 The ltcalc Lexical Analyzer.

Until now, we relied on Bison’s defaults to enable location tracking. The next step is to
rewrite the lexical analyzer, and make it able to feed the parser with the token locations,
as it already does for semantic values.

To this end, we must take into account every single character of the input text, to avoid
the computed locations of being fuzzy or wrong:

int
yylex (void)
{
int c;

/* Skip white space. */
while ((c = getchar ()) == ’ ’ || c == ’\t’)
++yylloc.last_column;

/* Step. */
yylloc.first_line = yylloc.last_line;
yylloc.first_column = yylloc.last_column;

/* Process numbers. */
if (isdigit (c))
{

yylval = c - ’0’;
++yylloc.last_column;
while (isdigit (c = getchar ()))
{

++yylloc.last_column;
yylval = yylval * 10 + c - ’0’;

}
ungetc (c, stdin);
return NUM;

}

/* Return end-of-input. */
if (c == EOF)
return 0;

34 Bison 1.875

/* Return a single char, and update location. */
if (c == ’\n’)
{

++yylloc.last_line;
yylloc.last_column = 0;

}
else
++yylloc.last_column;

return c;
}

Basically, the lexical analyzer performs the same processing as before: it skips blanks
and tabs, and reads numbers or single-character tokens. In addition, it updates yylloc,
the global variable (of type YYLTYPE) containing the token’s location.

Now, each time this function returns a token, the parser has its number as well as its
semantic value, and its location in the text. The last needed change is to initialize yylloc,
for example in the controlling function:

int
main (void)
{
yylloc.first_line = yylloc.last_line = 1;
yylloc.first_column = yylloc.last_column = 0;
return yyparse ();

}

Remember that computing locations is not a matter of syntax. Every character must be
associated to a location update, whether it is in valid input, in comments, in literal strings,
and so on.

2.5 Multi-Function Calculator: mfcalc

Now that the basics of Bison have been discussed, it is time to move on to a more
advanced problem. The above calculators provided only five functions, ‘+’, ‘-’, ‘*’, ‘/’ and
‘^’. It would be nice to have a calculator that provides other mathematical functions such
as sin, cos, etc.

It is easy to add new operators to the infix calculator as long as they are only single-
character literals. The lexical analyzer yylex passes back all nonnumber characters as
tokens, so new grammar rules suffice for adding a new operator. But we want something
more flexible: built-in functions whose syntax has this form:

function_name (argument)

At the same time, we will add memory to the calculator, by allowing you to create named
variables, store values in them, and use them later. Here is a sample session with the
multi-function calculator:

$ mfcalc

pi = 3.141592653589

3.1415926536

Chapter 2: Examples 35

sin(pi)

0.0000000000
alpha = beta1 = 2.3

2.3000000000
alpha

2.3000000000
ln(alpha)

0.8329091229
exp(ln(beta1))

2.3000000000
$

Note that multiple assignment and nested function calls are permitted.

2.5.1 Declarations for mfcalc

Here are the C and Bison declarations for the multi-function calculator.
%{
#include <math.h> /* For math functions, cos(), sin(), etc. */
#include "calc.h" /* Contains definition of ‘symrec’. */
int yylex (void);
void yyerror (char const *);

%}

%union {
double val; /* For returning numbers. */
symrec *tptr; /* For returning symbol-table pointers. */

}
%token <val> NUM /* Simple double precision number. */
%token <tptr> VAR FNCT /* Variable and Function. */
%type <val> exp

%right ’=’
%left ’-’ ’+’
%left ’*’ ’/’
%left NEG /* negation--unary minus */
%right ’^’ /* exponentiation */
%% /* The grammar follows. */

The above grammar introduces only two new features of the Bison language. These
features allow semantic values to have various data types (see 〈undefined〉 [More Than One
Value Type], page 〈undefined〉).

The %union declaration specifies the entire list of possible types; this is instead of defining
YYSTYPE. The allowable types are now double-floats (for exp and NUM) and pointers to entries
in the symbol table. See 〈undefined〉 [The Collection of Value Types], page 〈undefined〉.

Since values can now have various types, it is necessary to associate a type with each
grammar symbol whose semantic value is used. These symbols are NUM, VAR, FNCT, and exp.
Their declarations are augmented with information about their data type (placed between
angle brackets).

36 Bison 1.875

The Bison construct %type is used for declaring nonterminal symbols, just as %token
is used for declaring token types. We have not used %type before because nonterminal
symbols are normally declared implicitly by the rules that define them. But exp must be
declared explicitly so we can specify its value type. See 〈undefined〉 [Nonterminal Symbols],
page 〈undefined〉.

2.5.2 Grammar Rules for mfcalc

Here are the grammar rules for the multi-function calculator. Most of them are copied
directly from calc; three rules, those which mention VAR or FNCT, are new.

input: /* empty */
| input line

;

line:
’\n’

| exp ’\n’ { printf ("\t%.10g\n", $1); }
| error ’\n’ { yyerrok; }

;

exp: NUM { $$ = $1; }
| VAR { $$ = $1->value.var; }
| VAR ’=’ exp { $$ = $3; $1->value.var = $3; }
| FNCT ’(’ exp ’)’ { $$ = (*($1->value.fnctptr))($3); }
| exp ’+’ exp { $$ = $1 + $3; }
| exp ’-’ exp { $$ = $1 - $3; }
| exp ’*’ exp { $$ = $1 * $3; }
| exp ’/’ exp { $$ = $1 / $3; }
| ’-’ exp %prec NEG { $$ = -$2; }
| exp ’^’ exp { $$ = pow ($1, $3); }
| ’(’ exp ’)’ { $$ = $2; }

;
/* End of grammar. */
%%

2.5.3 The mfcalc Symbol Table

The multi-function calculator requires a symbol table to keep track of the names and
meanings of variables and functions. This doesn’t affect the grammar rules (except for the
actions) or the Bison declarations, but it requires some additional C functions for support.

The symbol table itself consists of a linked list of records. Its definition, which is kept in
the header ‘calc.h’, is as follows. It provides for either functions or variables to be placed
in the table.

/* Function type. */
typedef double (*func_t) (double);

Chapter 2: Examples 37

/* Data type for links in the chain of symbols. */
struct symrec
{
char *name; /* name of symbol */
int type; /* type of symbol: either VAR or FNCT */
union
{

double var; /* value of a VAR */
func_t fnctptr; /* value of a FNCT */

} value;
struct symrec *next; /* link field */

};

typedef struct symrec symrec;

/* The symbol table: a chain of ‘struct symrec’. */
extern symrec *sym_table;

symrec *putsym (char const *, func_t);
symrec *getsym (char const *);

The new version of main includes a call to init_table, a function that initializes the
symbol table. Here it is, and init_table as well:

#include <stdio.h>

/* Called by yyparse on error. */
void
yyerror (char const *s)
{
printf ("%s\n", s);

}

struct init
{
char const *fname;
double (*fnct) (double);

};

struct init const arith_fncts[] =
{
"sin", sin,
"cos", cos,
"atan", atan,
"ln", log,
"exp", exp,
"sqrt", sqrt,
0, 0

};

38 Bison 1.875

/* The symbol table: a chain of ‘struct symrec’. */
symrec *sym_table;

/* Put arithmetic functions in table. */
void
init_table (void)
{
int i;
symrec *ptr;
for (i = 0; arith_fncts[i].fname != 0; i++)

{
ptr = putsym (arith_fncts[i].fname, FNCT);
ptr->value.fnctptr = arith_fncts[i].fnct;

}
}

int
main (void)
{
init_table ();
return yyparse ();

}

By simply editing the initialization list and adding the necessary include files, you can
add additional functions to the calculator.

Two important functions allow look-up and installation of symbols in the symbol table.
The function putsym is passed a name and the type (VAR or FNCT) of the object to be
installed. The object is linked to the front of the list, and a pointer to the object is
returned. The function getsym is passed the name of the symbol to look up. If found, a
pointer to that symbol is returned; otherwise zero is returned.

symrec *
putsym (char const *sym_name, int sym_type)
{
symrec *ptr;
ptr = (symrec *) malloc (sizeof (symrec));
ptr->name = (char *) malloc (strlen (sym_name) + 1);
strcpy (ptr->name,sym_name);
ptr->type = sym_type;
ptr->value.var = 0; /* Set value to 0 even if fctn. */
ptr->next = (struct symrec *)sym_table;
sym_table = ptr;
return ptr;

}

symrec *
getsym (char const *sym_name)
{
symrec *ptr;

Chapter 2: Examples 39

for (ptr = sym_table; ptr != (symrec *) 0;
ptr = (symrec *)ptr->next)

if (strcmp (ptr->name,sym_name) == 0)
return ptr;

return 0;
}

The function yylex must now recognize variables, numeric values, and the
single-character arithmetic operators. Strings of alphanumeric characters with a leading
non-digit are recognized as either variables or functions depending on what the symbol
table says about them.

The string is passed to getsym for look up in the symbol table. If the name appears in
the table, a pointer to its location and its type (VAR or FNCT) is returned to yyparse. If it
is not already in the table, then it is installed as a VAR using putsym. Again, a pointer and
its type (which must be VAR) is returned to yyparse.

No change is needed in the handling of numeric values and arithmetic operators in yylex.

#include <ctype.h>

int
yylex (void)
{
int c;

/* Ignore white space, get first nonwhite character. */
while ((c = getchar ()) == ’ ’ || c == ’\t’);

if (c == EOF)
return 0;

/* Char starts a number => parse the number. */
if (c == ’.’ || isdigit (c))

{
ungetc (c, stdin);
scanf ("%lf", &yylval.val);
return NUM;

}

/* Char starts an identifier => read the name. */
if (isalpha (c))

{
symrec *s;
static char *symbuf = 0;
static int length = 0;
int i;

40 Bison 1.875

/* Initially make the buffer long enough
for a 40-character symbol name. */

if (length == 0)
length = 40, symbuf = (char *)malloc (length + 1);

i = 0;
do

{
/* If buffer is full, make it bigger. */
if (i == length)

{
length *= 2;
symbuf = (char *) realloc (symbuf, length + 1);

}
/* Add this character to the buffer. */
symbuf[i++] = c;
/* Get another character. */
c = getchar ();

}

while (isalnum (c));

ungetc (c, stdin);
symbuf[i] = ’\0’;

s = getsym (symbuf);
if (s == 0)
s = putsym (symbuf, VAR);

yylval.tptr = s;
return s->type;

}

/* Any other character is a token by itself. */
return c;

}

This program is both powerful and flexible. You may easily add new functions, and it
is a simple job to modify this code to install predefined variables such as pi or e as well.

2.6 Exercises

1. Add some new functions from ‘math.h’ to the initialization list.
2. Add another array that contains constants and their values. Then modify init_table

to add these constants to the symbol table. It will be easiest to give the constants type
VAR.

3. Make the program report an error if the user refers to an uninitialized variable in any
way except to store a value in it.

Chapter 3: Bison Grammar Files 41

3 Bison Grammar Files

Bison takes as input a context-free grammar specification and produces a C-language
function that recognizes correct instances of the grammar.

The Bison grammar input file conventionally has a name ending in ‘.y’. See 〈undefined〉
[Invoking Bison], page 〈undefined〉.

3.1 Outline of a Bison Grammar

A Bison grammar file has four main sections, shown here with the appropriate delimiters:
%{

Prologue

%}

Bison declarations

%%
Grammar rules

%%

Epilogue

Comments enclosed in ‘/* ... */’ may appear in any of the sections. As a gnu exten-
sion, ‘//’ introduces a comment that continues until end of line.

3.1.1 The prologue

The Prologue section contains macro definitions and declarations of functions and vari-
ables that are used in the actions in the grammar rules. These are copied to the beginning
of the parser file so that they precede the definition of yyparse. You can use ‘#include’
to get the declarations from a header file. If you don’t need any C declarations, you may
omit the ‘%{’ and ‘%}’ delimiters that bracket this section.

You may have more than one Prologue section, intermixed with the Bison declarations.
This allows you to have C and Bison declarations that refer to each other. For example, the
%union declaration may use types defined in a header file, and you may wish to prototype
functions that take arguments of type YYSTYPE. This can be done with two Prologue blocks,
one before and one after the %union declaration.

%{
#include <stdio.h>
#include "ptypes.h"

%}

%union {
long n;
tree t; /* tree is defined in ‘ptypes.h’. */

}

42 Bison 1.875

%{
static void print_token_value (FILE *, int, YYSTYPE);
#define YYPRINT(F, N, L) print_token_value (F, N, L)

%}

...

3.1.2 The Bison Declarations Section

The Bison declarations section contains declarations that define terminal and nontermi-
nal symbols, specify precedence, and so on. In some simple grammars you may not need
any declarations. See 〈undefined〉 [Bison Declarations], page 〈undefined〉.

3.1.3 The Grammar Rules Section

The grammar rules section contains one or more Bison grammar rules, and nothing else.
See 〈undefined〉 [Syntax of Grammar Rules], page 〈undefined〉.

There must always be at least one grammar rule, and the first ‘%%’ (which precedes the
grammar rules) may never be omitted even if it is the first thing in the file.

3.1.4 The epilogue

The Epilogue is copied verbatim to the end of the parser file, just as the Prologue is
copied to the beginning. This is the most convenient place to put anything that you want
to have in the parser file but which need not come before the definition of yyparse. For
example, the definitions of yylex and yyerror often go here. Because C requires functions
to be declared before being used, you often need to declare functions like yylex and yyerror
in the Prologue, even if you define them int he Epilogue. See 〈undefined〉 [Parser C-Language
Interface], page 〈undefined〉.

If the last section is empty, you may omit the ‘%%’ that separates it from the grammar
rules.

The Bison parser itself contains many macros and identifiers whose names start with
‘yy’ or ‘YY’, so it is a good idea to avoid using any such names (except those documented
in this manual) in the epilogue of the grammar file.

3.2 Symbols, Terminal and Nonterminal

Symbols in Bison grammars represent the grammatical classifications of the language.

A terminal symbol (also known as a token type) represents a class of syntactically
equivalent tokens. You use the symbol in grammar rules to mean that a token in that class
is allowed. The symbol is represented in the Bison parser by a numeric code, and the yylex
function returns a token type code to indicate what kind of token has been read. You don’t
need to know what the code value is; you can use the symbol to stand for it.

Chapter 3: Bison Grammar Files 43

A nonterminal symbol stands for a class of syntactically equivalent groupings. The
symbol name is used in writing grammar rules. By convention, it should be all lower case.

Symbol names can contain letters, digits (not at the beginning), underscores and periods.
Periods make sense only in nonterminals.

There are three ways of writing terminal symbols in the grammar:
• A named token type is written with an identifier, like an identifier in C. By convention,

it should be all upper case. Each such name must be defined with a Bison declaration
such as %token. See 〈undefined〉 [Token Type Names], page 〈undefined〉.

• A character token type (or literal character token) is written in the grammar using
the same syntax used in C for character constants; for example, ’+’ is a character
token type. A character token type doesn’t need to be declared unless you need to
specify its semantic value data type (see 〈undefined〉 [Data Types of Semantic Values],
page 〈undefined〉), associativity, or precedence (see 〈undefined〉 [Operator Precedence],
page 〈undefined〉).
By convention, a character token type is used only to represent a token that consists of
that particular character. Thus, the token type ’+’ is used to represent the character
‘+’ as a token. Nothing enforces this convention, but if you depart from it, your program
will confuse other readers.
All the usual escape sequences used in character literals in C can be used in Bison
as well, but you must not use the null character as a character literal because its nu-
meric code, zero, signifies end-of-input (see 〈undefined〉 [Calling Convention for yylex],
page 〈undefined〉). Also, unlike standard C, trigraphs have no special meaning in Bison
character literals, nor is backslash-newline allowed.

• A literal string token is written like a C string constant; for example, "<=" is a literal
string token. A literal string token doesn’t need to be declared unless you need to
specify its semantic value data type (see 〈undefined〉 [Value Type], page 〈undefined〉),
associativity, or precedence (see 〈undefined〉 [Precedence], page 〈undefined〉).
You can associate the literal string token with a symbolic name as an alias, using the
%token declaration (see 〈undefined〉 [Token Declarations], page 〈undefined〉). If you
don’t do that, the lexical analyzer has to retrieve the token number for the literal
string token from the yytname table (see 〈undefined〉 [Calling Convention], page 〈un-
defined〉).
Warning: literal string tokens do not work in Yacc.
By convention, a literal string token is used only to represent a token that consists
of that particular string. Thus, you should use the token type "<=" to represent the
string ‘<=’ as a token. Bison does not enforce this convention, but if you depart from
it, people who read your program will be confused.
All the escape sequences used in string literals in C can be used in Bison as well.
However, unlike Standard C, trigraphs have no special meaning in Bison string literals,
nor is backslash-newline allowed. A literal string token must contain two or more
characters; for a token containing just one character, use a character token (see above).

How you choose to write a terminal symbol has no effect on its grammatical meaning.
That depends only on where it appears in rules and on when the parser function returns
that symbol.

44 Bison 1.875

The value returned by yylex is always one of the terminal symbols, except that a zero
or negative value signifies end-of-input. Whichever way you write the token type in the
grammar rules, you write it the same way in the definition of yylex. The numeric code for
a character token type is simply the positive numeric code of the character, so yylex can
use the identical value to generate the requisite code, though you may need to convert it to
unsigned char to avoid sign-extension on hosts where char is signed. Each named token
type becomes a C macro in the parser file, so yylex can use the name to stand for the
code. (This is why periods don’t make sense in terminal symbols.) See 〈undefined〉 [Calling
Convention for yylex], page 〈undefined〉.

If yylex is defined in a separate file, you need to arrange for the token-type macro
definitions to be available there. Use the ‘-d’ option when you run Bison, so that it will
write these macro definitions into a separate header file ‘name.tab.h’ which you can include
in the other source files that need it. See 〈undefined〉 [Invoking Bison], page 〈undefined〉.

If you want to write a grammar that is portable to any Standard C host, you must use
only non-null character tokens taken from the basic execution character set of Standard C.
This set consists of the ten digits, the 52 lower- and upper-case English letters, and the
characters in the following C-language string:

"\a\b\t\n\v\f\r !\"#%&’()*+,-./:;<=>?[\\]^_{|}~"

The yylex function and Bison must use a consistent character set and encoding for
character tokens. For example, if you run Bison in an ascii environment, but then compile
and run the resulting program in an environment that uses an incompatible character set
like ebcdic, the resulting program may not work because the tables generated by Bison
will assume ascii numeric values for character tokens. It is standard practice for software
distributions to contain C source files that were generated by Bison in an ascii environment,
so installers on platforms that are incompatible with ascii must rebuild those files before
compiling them.

The symbol error is a terminal symbol reserved for error recovery (see 〈undefined〉 [Error
Recovery], page 〈undefined〉); you shouldn’t use it for any other purpose. In particular,
yylex should never return this value. The default value of the error token is 256, unless
you explicitly assigned 256 to one of your tokens with a %token declaration.

3.3 Syntax of Grammar Rules

A Bison grammar rule has the following general form:
result: components...

;

where result is the nonterminal symbol that this rule describes, and components are vari-
ous terminal and nonterminal symbols that are put together by this rule (see 〈undefined〉
[Symbols], page 〈undefined〉).

For example,
exp: exp ’+’ exp

;

says that two groupings of type exp, with a ‘+’ token in between, can be combined into a
larger grouping of type exp.

Chapter 3: Bison Grammar Files 45

White space in rules is significant only to separate symbols. You can add extra white
space as you wish.

Scattered among the components can be actions that determine the semantics of the
rule. An action looks like this:

{C statements}

Usually there is only one action and it follows the components. See 〈undefined〉 [Actions],
page 〈undefined〉.

Multiple rules for the same result can be written separately or can be joined with the
vertical-bar character ‘|’ as follows:

result: rule1-components...
| rule2-components...
...
;

They are still considered distinct rules even when joined in this way.

If components in a rule is empty, it means that result can match the empty string. For
example, here is how to define a comma-separated sequence of zero or more exp groupings:

expseq: /* empty */
| expseq1
;

expseq1: exp
| expseq1 ’,’ exp
;

It is customary to write a comment ‘/* empty */’ in each rule with no components.

3.4 Recursive Rules

A rule is called recursive when its result nonterminal appears also on its right hand
side. Nearly all Bison grammars need to use recursion, because that is the only way to
define a sequence of any number of a particular thing. Consider this recursive definition of
a comma-separated sequence of one or more expressions:

expseq1: exp
| expseq1 ’,’ exp
;

Since the recursive use of expseq1 is the leftmost symbol in the right hand side, we call
this left recursion. By contrast, here the same construct is defined using right recursion:

expseq1: exp
| exp ’,’ expseq1
;

Any kind of sequence can be defined using either left recursion or right recursion, but you
should always use left recursion, because it can parse a sequence of any number of elements
with bounded stack space. Right recursion uses up space on the Bison stack in proportion
to the number of elements in the sequence, because all the elements must be shifted onto

46 Bison 1.875

the stack before the rule can be applied even once. See 〈undefined〉 [The Bison Parser
Algorithm], page 〈undefined〉, for further explanation of this.

Indirect or mutual recursion occurs when the result of the rule does not appear directly
on its right hand side, but does appear in rules for other nonterminals which do appear on
its right hand side.

For example:
expr: primary

| primary ’+’ primary
;

primary: constant
| ’(’ expr ’)’
;

defines two mutually-recursive nonterminals, since each refers to the other.

3.5 Defining Language Semantics

The grammar rules for a language determine only the syntax. The semantics are de-
termined by the semantic values associated with various tokens and groupings, and by the
actions taken when various groupings are recognized.

For example, the calculator calculates properly because the value associated with each
expression is the proper number; it adds properly because the action for the grouping ‘x + y ’
is to add the numbers associated with x and y.

3.5.1 Data Types of Semantic Values

In a simple program it may be sufficient to use the same data type for the semantic
values of all language constructs. This was true in the rpn and infix calculator examples
(see 〈undefined〉 [Reverse Polish Notation Calculator], page 〈undefined〉).

Bison’s default is to use type int for all semantic values. To specify some other type,
define YYSTYPE as a macro, like this:

#define YYSTYPE double

This macro definition must go in the prologue of the grammar file (see 〈undefined〉 [Outline
of a Bison Grammar], page 〈undefined〉).

3.5.2 More Than One Value Type

In most programs, you will need different data types for different kinds of tokens and
groupings. For example, a numeric constant may need type int or long, while a string
constant needs type char *, and an identifier might need a pointer to an entry in the
symbol table.

To use more than one data type for semantic values in one parser, Bison requires you to
do two things:
• Specify the entire collection of possible data types, with the %union Bison declaration

(see 〈undefined〉 [The Collection of Value Types], page 〈undefined〉).

Chapter 3: Bison Grammar Files 47

• Choose one of those types for each symbol (terminal or nonterminal) for which semantic
values are used. This is done for tokens with the %token Bison declaration (see 〈unde-
fined〉 [Token Type Names], page 〈undefined〉) and for groupings with the %type Bison
declaration (see 〈undefined〉 [Nonterminal Symbols], page 〈undefined〉).

3.5.3 Actions

An action accompanies a syntactic rule and contains C code to be executed each time
an instance of that rule is recognized. The task of most actions is to compute a semantic
value for the grouping built by the rule from the semantic values associated with tokens or
smaller groupings.

An action consists of C statements surrounded by braces, much like a compound state-
ment in C. An action can contain any sequence of C statements. Bison does not look for
trigraphs, though, so if your C code uses trigraphs you should ensure that they do not affect
the nesting of braces or the boundaries of comments, strings, or character literals.

An action can be placed at any position in the rule; it is executed at that position. Most
rules have just one action at the end of the rule, following all the components. Actions in
the middle of a rule are tricky and used only for special purposes (see 〈undefined〉 [Actions
in Mid-Rule], page 〈undefined〉).

The C code in an action can refer to the semantic values of the components matched
by the rule with the construct $n , which stands for the value of the nth component. The
semantic value for the grouping being constructed is $$. (Bison translates both of these
constructs into array element references when it copies the actions into the parser file.)

Here is a typical example:
exp: ...

| exp ’+’ exp
{ $$ = $1 + $3; }

This rule constructs an exp from two smaller exp groupings connected by a plus-sign token.
In the action, $1 and $3 refer to the semantic values of the two component exp groupings,
which are the first and third symbols on the right hand side of the rule. The sum is stored
into $$ so that it becomes the semantic value of the addition-expression just recognized by
the rule. If there were a useful semantic value associated with the ‘+’ token, it could be
referred to as $2.

Note that the vertical-bar character ‘|’ is really a rule separator, and actions are attached
to a single rule. This is a difference with tools like Flex, for which ‘|’ stands for either “or”,
or “the same action as that of the next rule”. In the following example, the action is
triggered only when ‘b’ is found:

a-or-b: ’a’|’b’ { a_or_b_found = 1; };

If you don’t specify an action for a rule, Bison supplies a default: $$ = $1. Thus, the
value of the first symbol in the rule becomes the value of the whole rule. Of course, the
default action is valid only if the two data types match. There is no meaningful default
action for an empty rule; every empty rule must have an explicit action unless the rule’s
value does not matter.

$n with n zero or negative is allowed for reference to tokens and groupings on the stack
before those that match the current rule. This is a very risky practice, and to use it reliably

48 Bison 1.875

you must be certain of the context in which the rule is applied. Here is a case in which you
can use this reliably:

foo: expr bar ’+’ expr { ... }
| expr bar ’-’ expr { ... }
;

bar: /* empty */
{ previous_expr = $0; }
;

As long as bar is used only in the fashion shown here, $0 always refers to the expr which
precedes bar in the definition of foo.

3.5.4 Data Types of Values in Actions

If you have chosen a single data type for semantic values, the $$ and $n constructs
always have that data type.

If you have used %union to specify a variety of data types, then you must declare a
choice among these types for each terminal or nonterminal symbol that can have a semantic
value. Then each time you use $$ or $n , its data type is determined by which symbol it
refers to in the rule. In this example,

exp: ...
| exp ’+’ exp

{ $$ = $1 + $3; }

$1 and $3 refer to instances of exp, so they all have the data type declared for the nonter-
minal symbol exp. If $2 were used, it would have the data type declared for the terminal
symbol ’+’, whatever that might be.

Alternatively, you can specify the data type when you refer to the value, by inserting
‘<type>’ after the ‘$’ at the beginning of the reference. For example, if you have defined
types as shown here:

%union {
int itype;
double dtype;

}

then you can write $<itype>1 to refer to the first subunit of the rule as an integer, or
$<dtype>1 to refer to it as a double.

3.5.5 Actions in Mid-Rule

Occasionally it is useful to put an action in the middle of a rule. These actions are
written just like usual end-of-rule actions, but they are executed before the parser even
recognizes the following components.

A mid-rule action may refer to the components preceding it using $n , but it may not
refer to subsequent components because it is run before they are parsed.

The mid-rule action itself counts as one of the components of the rule. This makes a
difference when there is another action later in the same rule (and usually there is another

Chapter 3: Bison Grammar Files 49

at the end): you have to count the actions along with the symbols when working out which
number n to use in $n .

The mid-rule action can also have a semantic value. The action can set its value with
an assignment to $$, and actions later in the rule can refer to the value using $n . Since
there is no symbol to name the action, there is no way to declare a data type for the value
in advance, so you must use the ‘$<...>n ’ construct to specify a data type each time you
refer to this value.

There is no way to set the value of the entire rule with a mid-rule action, because
assignments to $$ do not have that effect. The only way to set the value for the entire rule
is with an ordinary action at the end of the rule.

Here is an example from a hypothetical compiler, handling a let statement that looks like
‘let (variable) statement ’ and serves to create a variable named variable temporarily
for the duration of statement. To parse this construct, we must put variable into the symbol
table while statement is parsed, then remove it afterward. Here is how it is done:

stmt: LET ’(’ var ’)’
{ $<context>$ = push_context ();

declare_variable ($3); }
stmt { $$ = $6;

pop_context ($<context>5); }

As soon as ‘let (variable)’ has been recognized, the first action is run. It saves a copy
of the current semantic context (the list of accessible variables) as its semantic value, using
alternative context in the data-type union. Then it calls declare_variable to add the
new variable to that list. Once the first action is finished, the embedded statement stmt
can be parsed. Note that the mid-rule action is component number 5, so the ‘stmt’ is
component number 6.

After the embedded statement is parsed, its semantic value becomes the value of the
entire let-statement. Then the semantic value from the earlier action is used to restore
the prior list of variables. This removes the temporary let-variable from the list so that it
won’t appear to exist while the rest of the program is parsed.

Taking action before a rule is completely recognized often leads to conflicts since the
parser must commit to a parse in order to execute the action. For example, the following
two rules, without mid-rule actions, can coexist in a working parser because the parser
can shift the open-brace token and look at what follows before deciding whether there is a
declaration or not:

compound: ’{’ declarations statements ’}’
| ’{’ statements ’}’
;

But when we add a mid-rule action as follows, the rules become nonfunctional:

compound: { prepare_for_local_variables (); }
’{’ declarations statements ’}’

| ’{’ statements ’}’
;

Now the parser is forced to decide whether to run the mid-rule action when it has read no
farther than the open-brace. In other words, it must commit to using one rule or the other,

50 Bison 1.875

without sufficient information to do it correctly. (The open-brace token is what is called
the look-ahead token at this time, since the parser is still deciding what to do about it. See
〈undefined〉 [Look-Ahead Tokens], page 〈undefined〉.)

You might think that you could correct the problem by putting identical actions into
the two rules, like this:

compound: { prepare_for_local_variables (); }
’{’ declarations statements ’}’

| { prepare_for_local_variables (); }
’{’ statements ’}’

;

But this does not help, because Bison does not realize that the two actions are identical.
(Bison never tries to understand the C code in an action.)

If the grammar is such that a declaration can be distinguished from a statement by the
first token (which is true in C), then one solution which does work is to put the action after
the open-brace, like this:

compound: ’{’ { prepare_for_local_variables (); }
declarations statements ’}’

| ’{’ statements ’}’
;

Now the first token of the following declaration or statement, which would in any case tell
Bison which rule to use, can still do so.

Another solution is to bury the action inside a nonterminal symbol which serves as a
subroutine:

subroutine: /* empty */
{ prepare_for_local_variables (); }

;

compound: subroutine
’{’ declarations statements ’}’

| subroutine
’{’ statements ’}’

;

Now Bison can execute the action in the rule for subroutine without deciding which rule
for compound it will eventually use. Note that the action is now at the end of its rule. Any
mid-rule action can be converted to an end-of-rule action in this way, and this is what Bison
actually does to implement mid-rule actions.

3.6 Tracking Locations

Though grammar rules and semantic actions are enough to write a fully functional parser,
it can be useful to process some additional information, especially symbol locations.

The way locations are handled is defined by providing a data type, and actions to take
when rules are matched.

Chapter 3: Bison Grammar Files 51

3.6.1 Data Type of Locations

Defining a data type for locations is much simpler than for semantic values, since all
tokens and groupings always use the same type.

The type of locations is specified by defining a macro called YYLTYPE. When YYLTYPE is
not defined, Bison uses a default structure type with four members:

typedef struct YYLTYPE
{
int first_line;
int first_column;
int last_line;
int last_column;

} YYLTYPE;

3.6.2 Actions and Locations

Actions are not only useful for defining language semantics, but also for describing the
behavior of the output parser with locations.

The most obvious way for building locations of syntactic groupings is very similar to
the way semantic values are computed. In a given rule, several constructs can be used to
access the locations of the elements being matched. The location of the nth component of
the right hand side is @n , while the location of the left hand side grouping is @$.

Here is a basic example using the default data type for locations:
exp: ...

| exp ’/’ exp
{

@$.first_column = @1.first_column;
@$.first_line = @1.first_line;
@$.last_column = @3.last_column;
@$.last_line = @3.last_line;
if ($3)

$$ = $1 / $3;
else

{
$$ = 1;
printf("Division by zero, l%d,c%d-l%d,c%d",

@3.first_line, @3.first_column,
@3.last_line, @3.last_column);

}
}

As for semantic values, there is a default action for locations that is run each time a rule
is matched. It sets the beginning of @$ to the beginning of the first symbol, and the end of
@$ to the end of the last symbol.

With this default action, the location tracking can be fully automatic. The example
above simply rewrites this way:

52 Bison 1.875

exp: ...
| exp ’/’ exp

{
if ($3)

$$ = $1 / $3;
else

{
$$ = 1;
printf("Division by zero, l%d,c%d-l%d,c%d",

@3.first_line, @3.first_column,
@3.last_line, @3.last_column);

}
}

3.6.3 Default Action for Locations

Actually, actions are not the best place to compute locations. Since locations are much
more general than semantic values, there is room in the output parser to redefine the
default action to take for each rule. The YYLLOC_DEFAULT macro is invoked each time a rule
is matched, before the associated action is run. It is also invoked while processing a syntax
error, to compute the error’s location.

Most of the time, this macro is general enough to suppress location dedicated code from
semantic actions.

The YYLLOC_DEFAULT macro takes three parameters. The first one is the location of the
grouping (the result of the computation). When a rule is matched, the second parameter is
an array holding locations of all right hand side elements of the rule being matched, and the
third parameter is the size of the rule’s right hand side. When processing a syntax error, the
second parameter is an array holding locations of the symbols that were discarded during
error processing, and the third parameter is the number of discarded symbols.

By default, YYLLOC_DEFAULT is defined this way for simple lalr(1) parsers:

#define YYLLOC_DEFAULT(Current, Rhs, N) \
Current.first_line = Rhs[1].first_line; \
Current.first_column = Rhs[1].first_column; \
Current.last_line = Rhs[N].last_line; \
Current.last_column = Rhs[N].last_column;

and like this for glr parsers:

#define YYLLOC_DEFAULT(Current, Rhs, N) \
Current.first_line = YYRHSLOC(Rhs,1).first_line; \
Current.first_column = YYRHSLOC(Rhs,1).first_column; \
Current.last_line = YYRHSLOC(Rhs,N).last_line; \
Current.last_column = YYRHSLOC(Rhs,N).last_column;

When defining YYLLOC_DEFAULT, you should consider that:

• All arguments are free of side-effects. However, only the first one (the result) should
be modified by YYLLOC_DEFAULT.

Chapter 3: Bison Grammar Files 53

• For consistency with semantic actions, valid indexes for the location array range from
1 to n.

3.7 Bison Declarations

The Bison declarations section of a Bison grammar defines the symbols used in for-
mulating the grammar and the data types of semantic values. See 〈undefined〉 [Symbols],
page 〈undefined〉.

All token type names (but not single-character literal tokens such as ’+’ and ’*’) must
be declared. Nonterminal symbols must be declared if you need to specify which data type
to use for the semantic value (see 〈undefined〉 [More Than One Value Type], page 〈unde-
fined〉).

The first rule in the file also specifies the start symbol, by default. If you want some other
symbol to be the start symbol, you must declare it explicitly (see 〈undefined〉 [Languages
and Context-Free Grammars], page 〈undefined〉).

3.7.1 Token Type Names

The basic way to declare a token type name (terminal symbol) is as follows:

%token name

Bison will convert this into a #define directive in the parser, so that the function yylex
(if it is in this file) can use the name name to stand for this token type’s code.

Alternatively, you can use %left, %right, or %nonassoc instead of %token, if you wish
to specify associativity and precedence. See 〈undefined〉 [Operator Precedence], page 〈un-
defined〉.

You can explicitly specify the numeric code for a token type by appending an integer
value in the field immediately following the token name:

%token NUM 300

It is generally best, however, to let Bison choose the numeric codes for all token types.
Bison will automatically select codes that don’t conflict with each other or with normal
characters.

In the event that the stack type is a union, you must augment the %token or other token
declaration to include the data type alternative delimited by angle-brackets (see 〈undefined〉
[More Than One Value Type], page 〈undefined〉).

For example:

%union { /* define stack type */
double val;
symrec *tptr;

}
%token <val> NUM /* define token NUM and its type */

You can associate a literal string token with a token type name by writing the literal
string at the end of a %token declaration which declares the name. For example:

54 Bison 1.875

%token arrow "=>"

For example, a grammar for the C language might specify these names with equivalent
literal string tokens:

%token <operator> OR "||"
%token <operator> LE 134 "<="
%left OR "<="

Once you equate the literal string and the token name, you can use them interchangeably in
further declarations or the grammar rules. The yylex function can use the token name or
the literal string to obtain the token type code number (see 〈undefined〉 [Calling Convention],
page 〈undefined〉).

3.7.2 Operator Precedence

Use the %left, %right or %nonassoc declaration to declare a token and specify its
precedence and associativity, all at once. These are called precedence declarations. See
〈undefined〉 [Operator Precedence], page 〈undefined〉, for general information on operator
precedence.

The syntax of a precedence declaration is the same as that of %token: either
%left symbols...

or
%left <type> symbols...

And indeed any of these declarations serves the purposes of %token. But in addition,
they specify the associativity and relative precedence for all the symbols:
• The associativity of an operator op determines how repeated uses of the operator nest:

whether ‘x op y op z ’ is parsed by grouping x with y first or by grouping y with z
first. %left specifies left-associativity (grouping x with y first) and %right specifies
right-associativity (grouping y with z first). %nonassoc specifies no associativity, which
means that ‘x op y op z ’ is considered a syntax error.

• The precedence of an operator determines how it nests with other operators. All
the tokens declared in a single precedence declaration have equal precedence and nest
together according to their associativity. When two tokens declared in different prece-
dence declarations associate, the one declared later has the higher precedence and is
grouped first.

3.7.3 The Collection of Value Types

The %union declaration specifies the entire collection of possible data types for semantic
values. The keyword %union is followed by a pair of braces containing the same thing that
goes inside a union in C.

For example:
%union {

double val;
symrec *tptr;

}

Chapter 3: Bison Grammar Files 55

This says that the two alternative types are double and symrec *. They are given names
val and tptr; these names are used in the %token and %type declarations to pick one of
the types for a terminal or nonterminal symbol (see 〈undefined〉 [Nonterminal Symbols],
page 〈undefined〉).

As an extension to posix, a tag is allowed after the union. For example:
%union value {
double val;
symrec *tptr;

}

specifies the union tag value, so the corresponding C type is union value. If you do
not specify a tag, it defaults to YYSTYPE.

Note that, unlike making a union declaration in C, you need not write a semicolon after
the closing brace.

3.7.4 Nonterminal Symbols

When you use %union to specify multiple value types, you must declare the value type of
each nonterminal symbol for which values are used. This is done with a %type declaration,
like this:

%type <type> nonterminal...

Here nonterminal is the name of a nonterminal symbol, and type is the name given in the
%union to the alternative that you want (see 〈undefined〉 [The Collection of Value Types],
page 〈undefined〉). You can give any number of nonterminal symbols in the same %type
declaration, if they have the same value type. Use spaces to separate the symbol names.

You can also declare the value type of a terminal symbol. To do this, use the same <type>
construction in a declaration for the terminal symbol. All kinds of token declarations allow
<type>.

3.7.5 Freeing Discarded Symbols

Some symbols can be discarded by the parser, typically during error recovery (see 〈un-
defined〉 [Error Recovery], page 〈undefined〉). Basically, during error recovery, embarrassing
symbols already pushed on the stack, and embarrassing tokens coming from the rest of the
file are thrown away until the parser falls on its feet. If these symbols convey heap based
information, this memory is lost. While this behavior is tolerable for batch parsers, such as
in compilers, it is unacceptable for parsers that can possibility “never end” such as shells,
or implementations of communication protocols.

The %destructor directive allows for the definition of code that is called when a symbol
is thrown away.

[Directive]%destructor { code } symbols
Declare that the code must be invoked for each of the symbols that will be discarded
by the parser. The code should use $$ to designate the semantic value associated to
the symbols. The additional parser parameters are also avaible (see 〈undefined〉 [The
Parser Function yyparse], page 〈undefined〉).

56 Bison 1.875

Warning: as of Bison 1.875, this feature is still considered as experimental, as there
was not enough user feedback. In particular, the syntax might still change.

For instance:
%union
{
char *string;

}
%token <string> STRING
%type <string> string
%destructor { free ($$); } STRING string

guarantees that when a STRING or a string will be discarded, its associated memory will
be freed.

Note that in the future, Bison might also consider that right hand side members that
are not mentioned in the action can be destroyed. For instance, in:

comment: "/*" STRING "*/";

the parser is entitled to destroy the semantic value of the string. Of course, this will not
apply to the default action; compare:

typeless: string; // $$ = $1 does not apply; $1 is destroyed.
typefull: string; // $$ = $1 applies, $1 is not destroyed.

3.7.6 Suppressing Conflict Warnings

Bison normally warns if there are any conflicts in the grammar (see 〈undefined〉
[Shift/Reduce Conflicts], page 〈undefined〉), but most real grammars have harmless
shift/reduce conflicts which are resolved in a predictable way and would be difficult to
eliminate. It is desirable to suppress the warning about these conflicts unless the number
of conflicts changes. You can do this with the %expect declaration.

The declaration looks like this:
%expect n

Here n is a decimal integer. The declaration says there should be no warning if there
are n shift/reduce conflicts and no reduce/reduce conflicts. An error, instead of the usual
warning, is given if there are either more or fewer conflicts, or if there are any reduce/reduce
conflicts.

In general, using %expect involves these steps:
• Compile your grammar without %expect. Use the ‘-v’ option to get a verbose list of

where the conflicts occur. Bison will also print the number of conflicts.
• Check each of the conflicts to make sure that Bison’s default resolution is what you

really want. If not, rewrite the grammar and go back to the beginning.
• Add an %expect declaration, copying the number n from the number which Bison

printed.

Now Bison will stop annoying you about the conflicts you have checked, but it will warn
you again if changes in the grammar result in additional conflicts.

Chapter 3: Bison Grammar Files 57

3.7.7 The Start-Symbol

Bison assumes by default that the start symbol for the grammar is the first nonterminal
specified in the grammar specification section. The programmer may override this restriction
with the %start declaration as follows:

%start symbol

3.7.8 A Pure (Reentrant) Parser

A reentrant program is one which does not alter in the course of execution; in other
words, it consists entirely of pure (read-only) code. Reentrancy is important whenever
asynchronous execution is possible; for example, a non-reentrant program may not be safe
to call from a signal handler. In systems with multiple threads of control, a non-reentrant
program must be called only within interlocks.

Normally, Bison generates a parser which is not reentrant. This is suitable for most
uses, and it permits compatibility with Yacc. (The standard Yacc interfaces are inherently
nonreentrant, because they use statically allocated variables for communication with yylex,
including yylval and yylloc.)

Alternatively, you can generate a pure, reentrant parser. The Bison declaration %pure-
parser says that you want the parser to be reentrant. It looks like this:

%pure-parser

The result is that the communication variables yylval and yylloc become local variables
in yyparse, and a different calling convention is used for the lexical analyzer function yylex.
See 〈undefined〉 [Calling Conventions for Pure Parsers], page 〈undefined〉, for the details of
this. The variable yynerrs also becomes local in yyparse (see 〈undefined〉 [The Error
Reporting Function yyerror], page 〈undefined〉). The convention for calling yyparse itself
is unchanged.

Whether the parser is pure has nothing to do with the grammar rules. You can generate
either a pure parser or a nonreentrant parser from any valid grammar.

3.7.9 Bison Declaration Summary

Here is a summary of the declarations used to define a grammar:

[Directive]%union
Declare the collection of data types that semantic values may have (see 〈undefined〉
[The Collection of Value Types], page 〈undefined〉).

[Directive]%token
Declare a terminal symbol (token type name) with no precedence or associativity
specified (see 〈undefined〉 [Token Type Names], page 〈undefined〉).

[Directive]%right
Declare a terminal symbol (token type name) that is right-associative (see 〈undefined〉
[Operator Precedence], page 〈undefined〉).

58 Bison 1.875

[Directive]%left
Declare a terminal symbol (token type name) that is left-associative (see 〈undefined〉
[Operator Precedence], page 〈undefined〉).

[Directive]%nonassoc
Declare a terminal symbol (token type name) that is nonassociative (using it in a way
that would be associative is a syntax error)

(see 〈undefined〉 [Operator Precedence], page 〈undefined〉).

[Directive]%type
Declare the type of semantic values for a nonterminal symbol (see 〈undefined〉 [Non-
terminal Symbols], page 〈undefined〉).

[Directive]%start
Specify the grammar’s start symbol (see 〈undefined〉 [The Start-Symbol], page 〈un-
defined〉).

[Directive]%expect
Declare the expected number of shift-reduce conflicts (see 〈undefined〉 [Suppressing
Conflict Warnings], page 〈undefined〉).

In order to change the behavior of bison, use the following directives:

[Directive]%debug
In the parser file, define the macro YYDEBUG to 1 if it is not already defined, so that
the debugging facilities are compiled.

See 〈undefined〉 [Tracing Your Parser], page 〈undefined〉.

[Directive]%defines
Write an extra output file containing macro definitions for the token type names
defined in the grammar and the semantic value type YYSTYPE, as well as a few extern
variable declarations.
If the parser output file is named ‘name.c’ then this file is named ‘name.h’.
This output file is essential if you wish to put the definition of yylex in a separate
source file, because yylex needs to be able to refer to token type codes and the
variable yylval. See 〈undefined〉 [Semantic Values of Tokens], page 〈undefined〉.

[Directive]%destructor
Specifying how the parser should reclaim the memory associated to discarded symbols.
See 〈undefined〉 [Freeing Discarded Symbols], page 〈undefined〉.

[Directive]%file-prefix="prefix"
Specify a prefix to use for all Bison output file names. The names are chosen as if the
input file were named ‘prefix.y’.

Chapter 3: Bison Grammar Files 59

[Directive]%locations
Generate the code processing the locations (see 〈undefined〉 [Special Features for Use
in Actions], page 〈undefined〉). This mode is enabled as soon as the grammar uses the
special ‘@n ’ tokens, but if your grammar does not use it, using ‘%locations’ allows
for more accurate syntax error messages.

[Directive]%name-prefix="prefix"
Rename the external symbols used in the parser so that they start with prefix instead
of ‘yy’. The precise list of symbols renamed is yyparse, yylex, yyerror, yynerrs,
yylval, yylloc, yychar, yydebug, and possible yylloc. For example, if you use
‘%name-prefix="c_"’, the names become c_parse, c_lex, and so on. See 〈unde-
fined〉 [Multiple Parsers in the Same Program], page 〈undefined〉.

[Directive]%no-parser
Do not include any C code in the parser file; generate tables only. The parser file
contains just #define directives and static variable declarations.
This option also tells Bison to write the C code for the grammar actions into a file
named ‘filename.act’, in the form of a brace-surrounded body fit for a switch
statement.

[Directive]%no-lines
Don’t generate any #line preprocessor commands in the parser file. Ordinarily Bison
writes these commands in the parser file so that the C compiler and debuggers will
associate errors and object code with your source file (the grammar file). This direc-
tive causes them to associate errors with the parser file, treating it an independent
source file in its own right.

[Directive]%output="filename"
Specify the filename for the parser file.

[Directive]%pure-parser
Request a pure (reentrant) parser program (see 〈undefined〉 [A Pure (Reentrant)
Parser], page 〈undefined〉).

[Directive]%token-table
Generate an array of token names in the parser file. The name of the array is yytname;
yytname[i] is the name of the token whose internal Bison token code number is i.
The first three elements of yytname correspond to the predefined tokens "$end",
"error", and "$undefined"; after these come the symbols defined in the grammar
file.
For single-character literal tokens and literal string tokens, the name in the table
includes the single-quote or double-quote characters: for example, "’+’" is a single-
character literal and "\"<=\"" is a literal string token. All the characters of the
literal string token appear verbatim in the string found in the table; even double-quote
characters are not escaped. For example, if the token consists of three characters ‘*"*’,
its string in yytname contains ‘"*"*"’. (In C, that would be written as "\"*\"*\"").

60 Bison 1.875

When you specify %token-table, Bison also generates macro definitions for macros
YYNTOKENS, YYNNTS, and YYNRULES, and YYNSTATES:

YYNTOKENS
The highest token number, plus one.

YYNNTS The number of nonterminal symbols.

YYNRULES The number of grammar rules,

YYNSTATES
The number of parser states (see 〈undefined〉 [Parser States], page 〈un-
defined〉).

[Directive]%verbose
Write an extra output file containing verbose descriptions of the parser states and
what is done for each type of look-ahead token in that state. See 〈undefined〉 [Under-
standing Your Parser], page 〈undefined〉, for more information.

[Directive]%yacc
Pretend the option ‘--yacc’ was given, i.e., imitate Yacc, including its naming con-
ventions. See 〈undefined〉 [Bison Options], page 〈undefined〉, for more.

3.8 Multiple Parsers in the Same Program

Most programs that use Bison parse only one language and therefore contain only one
Bison parser. But what if you want to parse more than one language with the same program?
Then you need to avoid a name conflict between different definitions of yyparse, yylval,
and so on.

The easy way to do this is to use the option ‘-p prefix ’ (see 〈undefined〉 [Invoking
Bison], page 〈undefined〉). This renames the interface functions and variables of the Bison
parser to start with prefix instead of ‘yy’. You can use this to give each parser distinct
names that do not conflict.

The precise list of symbols renamed is yyparse, yylex, yyerror, yynerrs, yylval,
yylloc, yychar and yydebug. For example, if you use ‘-p c’, the names become cparse,
clex, and so on.

All the other variables and macros associated with Bison are not renamed. These others
are not global; there is no conflict if the same name is used in different parsers. For example,
YYSTYPE is not renamed, but defining this in different ways in different parsers causes no
trouble (see 〈undefined〉 [Data Types of Semantic Values], page 〈undefined〉).

The ‘-p’ option works by adding macro definitions to the beginning of the parser source
file, defining yyparse as prefixparse, and so on. This effectively substitutes one name for
the other in the entire parser file.

Chapter 4: Parser C-Language Interface 61

4 Parser C-Language Interface

The Bison parser is actually a C function named yyparse. Here we describe the interface
conventions of yyparse and the other functions that it needs to use.

Keep in mind that the parser uses many C identifiers starting with ‘yy’ and ‘YY’ for
internal purposes. If you use such an identifier (aside from those in this manual) in an
action or in epilogue in the grammar file, you are likely to run into trouble.

4.1 The Parser Function yyparse

You call the function yyparse to cause parsing to occur. This function reads tokens,
executes actions, and ultimately returns when it encounters end-of-input or an unrecoverable
syntax error. You can also write an action which directs yyparse to return immediately
without reading further.

[Function]int yyparse (void)
The value returned by yyparse is 0 if parsing was successful (return is due to end-of-
input).

The value is 1 if parsing failed (return is due to a syntax error).

In an action, you can cause immediate return from yyparse by using these macros:

[Macro]YYACCEPT
Return immediately with value 0 (to report success).

[Macro]YYABORT
Return immediately with value 1 (to report failure).

4.2 The Lexical Analyzer Function yylex

The lexical analyzer function, yylex, recognizes tokens from the input stream and re-
turns them to the parser. Bison does not create this function automatically; you must write
it so that yyparse can call it. The function is sometimes referred to as a lexical scanner.

In simple programs, yylex is often defined at the end of the Bison grammar file. If yylex
is defined in a separate source file, you need to arrange for the token-type macro definitions
to be available there. To do this, use the ‘-d’ option when you run Bison, so that it will
write these macro definitions into a separate header file ‘name.tab.h’ which you can include
in the other source files that need it. See 〈undefined〉 [Invoking Bison], page 〈undefined〉.

4.2.1 Calling Convention for yylex

The value that yylex returns must be the positive numeric code for the type of token it
has just found; a zero or negative value signifies end-of-input.

62 Bison 1.875

When a token is referred to in the grammar rules by a name, that name in the parser
file becomes a C macro whose definition is the proper numeric code for that token type. So
yylex can use the name to indicate that type. See 〈undefined〉 [Symbols], page 〈undefined〉.

When a token is referred to in the grammar rules by a character literal, the numeric
code for that character is also the code for the token type. So yylex can simply return
that character code, possibly converted to unsigned char to avoid sign-extension. The null
character must not be used this way, because its code is zero and that signifies end-of-input.

Here is an example showing these things:
int
yylex (void)
{

...
if (c == EOF) /* Detect end-of-input. */

return 0;
...
if (c == ’+’ || c == ’-’)

return c; /* Assume token type for ‘+’ is ’+’. */
...
return INT; /* Return the type of the token. */
...

}

This interface has been designed so that the output from the lex utility can be used without
change as the definition of yylex.

If the grammar uses literal string tokens, there are two ways that yylex can determine
the token type codes for them:
• If the grammar defines symbolic token names as aliases for the literal string tokens,

yylex can use these symbolic names like all others. In this case, the use of the literal
string tokens in the grammar file has no effect on yylex.

• yylex can find the multicharacter token in the yytname table. The index of the token
in the table is the token type’s code. The name of a multicharacter token is recorded in
yytname with a double-quote, the token’s characters, and another double-quote. The
token’s characters are not escaped in any way; they appear verbatim in the contents of
the string in the table.
Here’s code for looking up a token in yytname, assuming that the characters of the
token are stored in token_buffer.

for (i = 0; i < YYNTOKENS; i++)
{

if (yytname[i] != 0
&& yytname[i][0] == ’"’
&& ! strncmp (yytname[i] + 1, token_buffer,

strlen (token_buffer))
&& yytname[i][strlen (token_buffer) + 1] == ’"’
&& yytname[i][strlen (token_buffer) + 2] == 0)

break;
}

Chapter 4: Parser C-Language Interface 63

The yytname table is generated only if you use the %token-table declaration. See
〈undefined〉 [Decl Summary], page 〈undefined〉.

4.2.2 Semantic Values of Tokens

In an ordinary (non-reentrant) parser, the semantic value of the token must be stored
into the global variable yylval. When you are using just one data type for semantic values,
yylval has that type. Thus, if the type is int (the default), you might write this in yylex:

...
yylval = value; /* Put value onto Bison stack. */
return INT; /* Return the type of the token. */
...

When you are using multiple data types, yylval’s type is a union made from the %union
declaration (see 〈undefined〉 [The Collection of Value Types], page 〈undefined〉). So when
you store a token’s value, you must use the proper member of the union. If the %union
declaration looks like this:

%union {
int intval;
double val;
symrec *tptr;

}

then the code in yylex might look like this:
...
yylval.intval = value; /* Put value onto Bison stack. */
return INT; /* Return the type of the token. */
...

4.2.3 Textual Positions of Tokens

If you are using the ‘@n ’-feature (see 〈undefined〉 [Tracking Locations], page 〈undefined〉)
in actions to keep track of the textual locations of tokens and groupings, then you must
provide this information in yylex. The function yyparse expects to find the textual location
of a token just parsed in the global variable yylloc. So yylex must store the proper data
in that variable.

By default, the value of yylloc is a structure and you need only initialize the members
that are going to be used by the actions. The four members are called first_line, first_
column, last_line and last_column. Note that the use of this feature makes the parser
noticeably slower.

The data type of yylloc has the name YYLTYPE.

4.2.4 Calling Conventions for Pure Parsers

When you use the Bison declaration %pure-parser to request a pure, reentrant parser,
the global communication variables yylval and yylloc cannot be used. (See 〈undefined〉
[A Pure (Reentrant) Parser], page 〈undefined〉.) In such parsers the two global variables

64 Bison 1.875

are replaced by pointers passed as arguments to yylex. You must declare them as shown
here, and pass the information back by storing it through those pointers.

int
yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
{
...
lvalp = value; / Put value onto Bison stack. */
return INT; /* Return the type of the token. */
...

}

If the grammar file does not use the ‘@’ constructs to refer to textual positions, then the
type YYLTYPE will not be defined. In this case, omit the second argument; yylex will be
called with only one argument.

4.3 The Error Reporting Function yyerror

The Bison parser detects a syntax error or parse error whenever it reads a token which
cannot satisfy any syntax rule. An action in the grammar can also explicitly proclaim
an error, using the macro YYERROR (see 〈undefined〉 [Special Features for Use in Actions],
page 〈undefined〉).

The Bison parser expects to report the error by calling an error reporting function named
yyerror, which you must supply. It is called by yyparse whenever a syntax error is found,
and it receives one argument. For a syntax error, the string is normally "syntax error".

If you invoke the directive %error-verbose in the Bison declarations section (see 〈un-
defined〉 [The Bison Declarations Section], page 〈undefined〉), then Bison provides a more
verbose and specific error message string instead of just plain "syntax error".

The parser can detect one other kind of error: stack overflow. This happens when the
input contains constructions that are very deeply nested. It isn’t likely you will encounter
this, since the Bison parser extends its stack automatically up to a very large limit. But
if overflow happens, yyparse calls yyerror in the usual fashion, except that the argument
string is "parser stack overflow".

The following definition suffices in simple programs:
void
yyerror (char const *s)
{

fprintf (stderr, "%s\n", s);
}

After yyerror returns to yyparse, the latter will attempt error recovery if you have
written suitable error recovery grammar rules (see 〈undefined〉 [Error Recovery], page 〈un-
defined〉). If recovery is impossible, yyparse will immediately return 1.

Obviously, in location tracking pure parsers, yyerror should have an access to the
current location. This is indeed the case for the GLR parsers, but not for the Yacc parser,
for historical reasons. I.e., if ‘%locations %pure-parser’ is passed then the prototypes for
yyerror are:

Chapter 4: Parser C-Language Interface 65

void yyerror (char const *msg); /* Yacc parsers. */
void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */

The prototypes are only indications of how the code produced by Bison uses yyerror.
Bison-generated code always ignores the returned value, so yyerror can return any type,
including void. Also, yyerror can be a variadic function; that is why the message is always
passed last.

Traditionally yyerror returns an int that is always ignored, but this is purely for
historical reasons, and void is preferable since it more accurately describes the return type
for yyerror.

The variable yynerrs contains the number of syntax errors encountered so far. Normally
this variable is global; but if you request a pure parser (see 〈undefined〉 [A Pure (Reentrant)
Parser], page 〈undefined〉) then it is a local variable which only the actions can access.

4.4 Special Features for Use in Actions

Here is a table of Bison constructs, variables and macros that are useful in actions.

[Variable]$$
Acts like a variable that contains the semantic value for the grouping made by the
current rule. See 〈undefined〉 [Actions], page 〈undefined〉.

[Variable]$n
Acts like a variable that contains the semantic value for the nth component of the
current rule. See 〈undefined〉 [Actions], page 〈undefined〉.

[Variable]$<typealt>$
Like $$ but specifies alternative typealt in the union specified by the %union decla-
ration. See 〈undefined〉 [Data Types of Values in Actions], page 〈undefined〉.

[Variable]$<typealt>n
Like $n but specifies alternative typealt in the union specified by the %union decla-
ration. See 〈undefined〉 [Data Types of Values in Actions], page 〈undefined〉.

[Macro]YYABORT;
Return immediately from yyparse, indicating failure. See 〈undefined〉 [The Parser
Function yyparse], page 〈undefined〉.

[Macro]YYACCEPT;
Return immediately from yyparse, indicating success. See 〈undefined〉 [The Parser
Function yyparse], page 〈undefined〉.

[Macro]YYBACKUP (token, value);
Unshift a token. This macro is allowed only for rules that reduce a single value, and
only when there is no look-ahead token. It is also disallowed in glr parsers. It installs

66 Bison 1.875

a look-ahead token with token type token and semantic value value; then it discards
the value that was going to be reduced by this rule.
If the macro is used when it is not valid, such as when there is a look-ahead token
already, then it reports a syntax error with a message ‘cannot back up’ and performs
ordinary error recovery.
In either case, the rest of the action is not executed.

[Macro]YYEMPTY
Value stored in yychar when there is no look-ahead token.

[Macro]YYERROR;
Cause an immediate syntax error. This statement initiates error recovery just as if
the parser itself had detected an error; however, it does not call yyerror, and does
not print any message. If you want to print an error message, call yyerror explicitly
before the ‘YYERROR;’ statement. See 〈undefined〉 [Error Recovery], page 〈undefined〉.

[Macro]YYRECOVERING
This macro stands for an expression that has the value 1 when the parser is recovering
from a syntax error, and 0 the rest of the time. See 〈undefined〉 [Error Recovery],
page 〈undefined〉.

[Variable]yychar
Variable containing the current look-ahead token. (In a pure parser, this is actually a
local variable within yyparse.) When there is no look-ahead token, the value YYEMPTY
is stored in the variable. See 〈undefined〉 [Look-Ahead Tokens], page 〈undefined〉.

[Macro]yyclearin;
Discard the current look-ahead token. This is useful primarily in error rules. See
〈undefined〉 [Error Recovery], page 〈undefined〉.

[Macro]yyerrok;
Resume generating error messages immediately for subsequent syntax errors. This is
useful primarily in error rules. See 〈undefined〉 [Error Recovery], page 〈undefined〉.

[Value]@$
Acts like a structure variable containing information on the textual position of the
grouping made by the current rule. See 〈undefined〉 [Tracking Locations], page 〈un-
defined〉.

[Value]@n
Acts like a structure variable containing information on the textual position of the
nth component of the current rule. See 〈undefined〉 [Tracking Locations], page 〈un-
defined〉.

Chapter 5: The Bison Parser Algorithm 67

5 The Bison Parser Algorithm

As Bison reads tokens, it pushes them onto a stack along with their semantic values.
The stack is called the parser stack. Pushing a token is traditionally called shifting.

For example, suppose the infix calculator has read ‘1 + 5 *’, with a ‘3’ to come. The
stack will have four elements, one for each token that was shifted.

But the stack does not always have an element for each token read. When the last
n tokens and groupings shifted match the components of a grammar rule, they can be
combined according to that rule. This is called reduction. Those tokens and groupings are
replaced on the stack by a single grouping whose symbol is the result (left hand side) of
that rule. Running the rule’s action is part of the process of reduction, because this is what
computes the semantic value of the resulting grouping.

For example, if the infix calculator’s parser stack contains this:

1 + 5 * 3

and the next input token is a newline character, then the last three elements can be reduced
to 15 via the rule:

expr: expr ’*’ expr;

Then the stack contains just these three elements:

1 + 15

At this point, another reduction can be made, resulting in the single value 16. Then the
newline token can be shifted.

The parser tries, by shifts and reductions, to reduce the entire input down to a single
grouping whose symbol is the grammar’s start-symbol (see 〈undefined〉 [Languages and
Context-Free Grammars], page 〈undefined〉).

This kind of parser is known in the literature as a bottom-up parser.

5.1 Look-Ahead Tokens

The Bison parser does not always reduce immediately as soon as the last n tokens and
groupings match a rule. This is because such a simple strategy is inadequate to handle
most languages. Instead, when a reduction is possible, the parser sometimes “looks ahead”
at the next token in order to decide what to do.

When a token is read, it is not immediately shifted; first it becomes the look-ahead token,
which is not on the stack. Now the parser can perform one or more reductions of tokens
and groupings on the stack, while the look-ahead token remains off to the side. When no
more reductions should take place, the look-ahead token is shifted onto the stack. This does
not mean that all possible reductions have been done; depending on the token type of the
look-ahead token, some rules may choose to delay their application.

Here is a simple case where look-ahead is needed. These three rules define expressions
which contain binary addition operators and postfix unary factorial operators (‘!’), and
allow parentheses for grouping.

68 Bison 1.875

expr: term ’+’ expr
| term
;

term: ’(’ expr ’)’
| term ’!’
| NUMBER
;

Suppose that the tokens ‘1 + 2’ have been read and shifted; what should be done? If
the following token is ‘)’, then the first three tokens must be reduced to form an expr.
This is the only valid course, because shifting the ‘)’ would produce a sequence of symbols
term ’)’, and no rule allows this.

If the following token is ‘!’, then it must be shifted immediately so that ‘2 !’ can be
reduced to make a term. If instead the parser were to reduce before shifting, ‘1 + 2’ would
become an expr. It would then be impossible to shift the ‘!’ because doing so would produce
on the stack the sequence of symbols expr ’!’. No rule allows that sequence.

The current look-ahead token is stored in the variable yychar. See 〈undefined〉 [Special
Features for Use in Actions], page 〈undefined〉.

5.2 Shift/Reduce Conflicts

Suppose we are parsing a language which has if-then and if-then-else statements, with a
pair of rules like this:

if_stmt:
IF expr THEN stmt

| IF expr THEN stmt ELSE stmt
;

Here we assume that IF, THEN and ELSE are terminal symbols for specific keyword tokens.
When the ELSE token is read and becomes the look-ahead token, the contents of the

stack (assuming the input is valid) are just right for reduction by the first rule. But it
is also legitimate to shift the ELSE, because that would lead to eventual reduction by the
second rule.

This situation, where either a shift or a reduction would be valid, is called a shift/reduce
conflict. Bison is designed to resolve these conflicts by choosing to shift, unless otherwise
directed by operator precedence declarations. To see the reason for this, let’s contrast it
with the other alternative.

Since the parser prefers to shift the ELSE, the result is to attach the else-clause to the
innermost if-statement, making these two inputs equivalent:

if x then if y then win (); else lose;

if x then do; if y then win (); else lose; end;

But if the parser chose to reduce when possible rather than shift, the result would be to
attach the else-clause to the outermost if-statement, making these two inputs equivalent:

if x then if y then win (); else lose;

Chapter 5: The Bison Parser Algorithm 69

if x then do; if y then win (); end; else lose;

The conflict exists because the grammar as written is ambiguous: either parsing of the
simple nested if-statement is legitimate. The established convention is that these ambiguities
are resolved by attaching the else-clause to the innermost if-statement; this is what Bison
accomplishes by choosing to shift rather than reduce. (It would ideally be cleaner to write an
unambiguous grammar, but that is very hard to do in this case.) This particular ambiguity
was first encountered in the specifications of Algol 60 and is called the “dangling else”
ambiguity.

To avoid warnings from Bison about predictable, legitimate shift/reduce conflicts, use
the %expect n declaration. There will be no warning as long as the number of shift/reduce
conflicts is exactly n. See 〈undefined〉 [Suppressing Conflict Warnings], page 〈undefined〉.

The definition of if_stmt above is solely to blame for the conflict, but the conflict
does not actually appear without additional rules. Here is a complete Bison input file that
actually manifests the conflict:

%token IF THEN ELSE variable
%%

stmt: expr
| if_stmt
;

if_stmt:
IF expr THEN stmt

| IF expr THEN stmt ELSE stmt
;

expr: variable
;

5.3 Operator Precedence

Another situation where shift/reduce conflicts appear is in arithmetic expressions. Here
shifting is not always the preferred resolution; the Bison declarations for operator precedence
allow you to specify when to shift and when to reduce.

5.3.1 When Precedence is Needed

Consider the following ambiguous grammar fragment (ambiguous because the input
‘1 - 2 * 3’ can be parsed in two different ways):

expr: expr ’-’ expr
| expr ’*’ expr
| expr ’<’ expr
| ’(’ expr ’)’
...
;

Suppose the parser has seen the tokens ‘1’, ‘-’ and ‘2’; should it reduce them via the rule
for the subtraction operator? It depends on the next token. Of course, if the next token is

70 Bison 1.875

‘)’, we must reduce; shifting is invalid because no single rule can reduce the token sequence
‘- 2)’ or anything starting with that. But if the next token is ‘*’ or ‘<’, we have a choice:
either shifting or reduction would allow the parse to complete, but with different results.

To decide which one Bison should do, we must consider the results. If the next operator
token op is shifted, then it must be reduced first in order to permit another opportunity
to reduce the difference. The result is (in effect) ‘1 - (2 op 3)’. On the other hand, if the
subtraction is reduced before shifting op, the result is ‘(1 - 2) op 3’. Clearly, then, the
choice of shift or reduce should depend on the relative precedence of the operators ‘-’ and
op: ‘*’ should be shifted first, but not ‘<’.

What about input such as ‘1 - 2 - 5’; should this be ‘(1 - 2) - 5’ or should it be
‘1 - (2 - 5)’? For most operators we prefer the former, which is called left association.
The latter alternative, right association, is desirable for assignment operators. The choice
of left or right association is a matter of whether the parser chooses to shift or reduce when
the stack contains ‘1 - 2’ and the look-ahead token is ‘-’: shifting makes right-associativity.

5.3.2 Specifying Operator Precedence

Bison allows you to specify these choices with the operator precedence declarations
%left and %right. Each such declaration contains a list of tokens, which are operators
whose precedence and associativity is being declared. The %left declaration makes all
those operators left-associative and the %right declaration makes them right-associative.
A third alternative is %nonassoc, which declares that it is a syntax error to find the same
operator twice “in a row”.

The relative precedence of different operators is controlled by the order in which they
are declared. The first %left or %right declaration in the file declares the operators whose
precedence is lowest, the next such declaration declares the operators whose precedence is
a little higher, and so on.

5.3.3 Precedence Examples

In our example, we would want the following declarations:

%left ’<’
%left ’-’
%left ’*’

In a more complete example, which supports other operators as well, we would declare
them in groups of equal precedence. For example, ’+’ is declared with ’-’:

%left ’<’ ’>’ ’=’ NE LE GE
%left ’+’ ’-’
%left ’*’ ’/’

(Here NE and so on stand for the operators for “not equal” and so on. We assume that
these tokens are more than one character long and therefore are represented by names, not
character literals.)

Chapter 5: The Bison Parser Algorithm 71

5.3.4 How Precedence Works

The first effect of the precedence declarations is to assign precedence levels to the terminal
symbols declared. The second effect is to assign precedence levels to certain rules: each rule
gets its precedence from the last terminal symbol mentioned in the components. (You
can also specify explicitly the precedence of a rule. See 〈undefined〉 [Context-Dependent
Precedence], page 〈undefined〉.)

Finally, the resolution of conflicts works by comparing the precedence of the rule being
considered with that of the look-ahead token. If the token’s precedence is higher, the choice
is to shift. If the rule’s precedence is higher, the choice is to reduce. If they have equal
precedence, the choice is made based on the associativity of that precedence level. The
verbose output file made by ‘-v’ (see 〈undefined〉 [Invoking Bison], page 〈undefined〉) says
how each conflict was resolved.

Not all rules and not all tokens have precedence. If either the rule or the look-ahead
token has no precedence, then the default is to shift.

5.4 Context-Dependent Precedence

Often the precedence of an operator depends on the context. This sounds outlandish at
first, but it is really very common. For example, a minus sign typically has a very high prece-
dence as a unary operator, and a somewhat lower precedence (lower than multiplication)
as a binary operator.

The Bison precedence declarations, %left, %right and %nonassoc, can only be used once
for a given token; so a token has only one precedence declared in this way. For context-
dependent precedence, you need to use an additional mechanism: the %prec modifier for
rules.

The %prec modifier declares the precedence of a particular rule by specifying a terminal
symbol whose precedence should be used for that rule. It’s not necessary for that symbol
to appear otherwise in the rule. The modifier’s syntax is:

%prec terminal-symbol

and it is written after the components of the rule. Its effect is to assign the rule the
precedence of terminal-symbol, overriding the precedence that would be deduced for it in
the ordinary way. The altered rule precedence then affects how conflicts involving that rule
are resolved (see 〈undefined〉 [Operator Precedence], page 〈undefined〉).

Here is how %prec solves the problem of unary minus. First, declare a precedence for a
fictitious terminal symbol named UMINUS. There are no tokens of this type, but the symbol
serves to stand for its precedence:

...
%left ’+’ ’-’
%left ’*’
%left UMINUS

Now the precedence of UMINUS can be used in specific rules:

72 Bison 1.875

exp: ...
| exp ’-’ exp
...
| ’-’ exp %prec UMINUS

5.5 Parser States

The function yyparse is implemented using a finite-state machine. The values pushed
on the parser stack are not simply token type codes; they represent the entire sequence of
terminal and nonterminal symbols at or near the top of the stack. The current state collects
all the information about previous input which is relevant to deciding what to do next.

Each time a look-ahead token is read, the current parser state together with the type of
look-ahead token are looked up in a table. This table entry can say, “Shift the look-ahead
token.” In this case, it also specifies the new parser state, which is pushed onto the top
of the parser stack. Or it can say, “Reduce using rule number n.” This means that a
certain number of tokens or groupings are taken off the top of the stack, and replaced by
one grouping. In other words, that number of states are popped from the stack, and one
new state is pushed.

There is one other alternative: the table can say that the look-ahead token is erroneous
in the current state. This causes error processing to begin (see 〈undefined〉 [Error Recovery],
page 〈undefined〉).

5.6 Reduce/Reduce Conflicts

A reduce/reduce conflict occurs if there are two or more rules that apply to the same
sequence of input. This usually indicates a serious error in the grammar.

For example, here is an erroneous attempt to define a sequence of zero or more word
groupings.

sequence: /* empty */
{ printf ("empty sequence\n"); }

| maybeword
| sequence word

{ printf ("added word %s\n", $2); }
;

maybeword: /* empty */
{ printf ("empty maybeword\n"); }

| word
{ printf ("single word %s\n", $1); }

;

The error is an ambiguity: there is more than one way to parse a single word into a
sequence. It could be reduced to a maybeword and then into a sequence via the second
rule. Alternatively, nothing-at-all could be reduced into a sequence via the first rule, and
this could be combined with the word using the third rule for sequence.

Chapter 5: The Bison Parser Algorithm 73

There is also more than one way to reduce nothing-at-all into a sequence. This can be
done directly via the first rule, or indirectly via maybeword and then the second rule.

You might think that this is a distinction without a difference, because it does not change
whether any particular input is valid or not. But it does affect which actions are run. One
parsing order runs the second rule’s action; the other runs the first rule’s action and the
third rule’s action. In this example, the output of the program changes.

Bison resolves a reduce/reduce conflict by choosing to use the rule that appears first in
the grammar, but it is very risky to rely on this. Every reduce/reduce conflict must be
studied and usually eliminated. Here is the proper way to define sequence:

sequence: /* empty */
{ printf ("empty sequence\n"); }

| sequence word
{ printf ("added word %s\n", $2); }

;

Here is another common error that yields a reduce/reduce conflict:

sequence: /* empty */
| sequence words
| sequence redirects
;

words: /* empty */
| words word
;

redirects:/* empty */
| redirects redirect
;

The intention here is to define a sequence which can contain either word or redirect
groupings. The individual definitions of sequence, words and redirects are error-free,
but the three together make a subtle ambiguity: even an empty input can be parsed in
infinitely many ways!

Consider: nothing-at-all could be a words. Or it could be two words in a row, or three,
or any number. It could equally well be a redirects, or two, or any number. Or it could
be a words followed by three redirects and another words. And so on.

Here are two ways to correct these rules. First, to make it a single level of sequence:

sequence: /* empty */
| sequence word
| sequence redirect
;

Second, to prevent either a words or a redirects from being empty:

sequence: /* empty */
| sequence words
| sequence redirects
;

74 Bison 1.875

words: word
| words word
;

redirects:redirect
| redirects redirect
;

5.7 Mysterious Reduce/Reduce Conflicts

Sometimes reduce/reduce conflicts can occur that don’t look warranted. Here is an
example:

%token ID

%%
def: param_spec return_spec ’,’

;
param_spec:

type
| name_list ’:’ type
;

return_spec:
type

| name ’:’ type
;

type: ID
;

name: ID
;

name_list:
name

| name ’,’ name_list
;

It would seem that this grammar can be parsed with only a single token of look-ahead:
when a param_spec is being read, an ID is a name if a comma or colon follows, or a type if
another ID follows. In other words, this grammar is lr(1).

However, Bison, like most parser generators, cannot actually handle all lr(1) grammars.
In this grammar, two contexts, that after an ID at the beginning of a param_spec and
likewise at the beginning of a return_spec, are similar enough that Bison assumes they
are the same. They appear similar because the same set of rules would be active—the
rule for reducing to a name and that for reducing to a type. Bison is unable to determine
at that stage of processing that the rules would require different look-ahead tokens in the
two contexts, so it makes a single parser state for them both. Combining the two contexts
causes a conflict later. In parser terminology, this occurrence means that the grammar is
not lalr(1).

Chapter 5: The Bison Parser Algorithm 75

In general, it is better to fix deficiencies than to document them. But this particular
deficiency is intrinsically hard to fix; parser generators that can handle lr(1) grammars are
hard to write and tend to produce parsers that are very large. In practice, Bison is more
useful as it is now.

When the problem arises, you can often fix it by identifying the two parser states that are
being confused, and adding something to make them look distinct. In the above example,
adding one rule to return_spec as follows makes the problem go away:

%token BOGUS
...
%%
...
return_spec:

type
| name ’:’ type
/* This rule is never used. */
| ID BOGUS
;

This corrects the problem because it introduces the possibility of an additional active
rule in the context after the ID at the beginning of return_spec. This rule is not active
in the corresponding context in a param_spec, so the two contexts receive distinct parser
states. As long as the token BOGUS is never generated by yylex, the added rule cannot alter
the way actual input is parsed.

In this particular example, there is another way to solve the problem: rewrite the rule
for return_spec to use ID directly instead of via name. This also causes the two confusing
contexts to have different sets of active rules, because the one for return_spec activates
the altered rule for return_spec rather than the one for name.

param_spec:
type

| name_list ’:’ type
;

return_spec:
type

| ID ’:’ type
;

5.8 Generalized lr (glr) Parsing

Bison produces deterministic parsers that choose uniquely when to reduce and which
reduction to apply based on a summary of the preceding input and on one extra token of
lookahead. As a result, normal Bison handles a proper subset of the family of context-
free languages. Ambiguous grammars, since they have strings with more than one possible
sequence of reductions cannot have deterministic parsers in this sense. The same is true
of languages that require more than one symbol of lookahead, since the parser lacks the
information necessary to make a decision at the point it must be made in a shift-reduce
parser. Finally, as previously mentioned (see 〈undefined〉 [Mystery Conflicts], page 〈unde-

76 Bison 1.875

fined〉), there are languages where Bison’s particular choice of how to summarize the input
seen so far loses necessary information.

When you use the ‘%glr-parser’ declaration in your grammar file, Bison generates a
parser that uses a different algorithm, called Generalized lr (or glr). A Bison glr parser
uses the same basic algorithm for parsing as an ordinary Bison parser, but behaves differ-
ently in cases where there is a shift-reduce conflict that has not been resolved by precedence
rules (see 〈undefined〉 [Precedence], page 〈undefined〉) or a reduce-reduce conflict. When a
glr parser encounters such a situation, it effectively splits into a several parsers, one for
each possible shift or reduction. These parsers then proceed as usual, consuming tokens
in lock-step. Some of the stacks may encounter other conflicts and split further, with the
result that instead of a sequence of states, a Bison glr parsing stack is what is in effect a
tree of states.

In effect, each stack represents a guess as to what the proper parse is. Additional
input may indicate that a guess was wrong, in which case the appropriate stack silently
disappears. Otherwise, the semantics actions generated in each stack are saved, rather than
being executed immediately. When a stack disappears, its saved semantic actions never get
executed. When a reduction causes two stacks to become equivalent, their sets of semantic
actions are both saved with the state that results from the reduction. We say that two
stacks are equivalent when they both represent the same sequence of states, and each pair
of corresponding states represents a grammar symbol that produces the same segment of
the input token stream.

Whenever the parser makes a transition from having multiple states to having one, it
reverts to the normal lalr(1) parsing algorithm, after resolving and executing the saved-up
actions. At this transition, some of the states on the stack will have semantic values that
are sets (actually multisets) of possible actions. The parser tries to pick one of the actions
by first finding one whose rule has the highest dynamic precedence, as set by the ‘%dprec’
declaration. Otherwise, if the alternative actions are not ordered by precedence, but there
the same merging function is declared for both rules by the ‘%merge’ declaration, Bison
resolves and evaluates both and then calls the merge function on the result. Otherwise, it
reports an ambiguity.

It is possible to use a data structure for the glr parsing tree that permits the processing
of any lalr(1) grammar in linear time (in the size of the input), any unambiguous (not
necessarily lalr(1)) grammar in quadratic worst-case time, and any general (possibly am-
biguous) context-free grammar in cubic worst-case time. However, Bison currently uses a
simpler data structure that requires time proportional to the length of the input times the
maximum number of stacks required for any prefix of the input. Thus, really ambiguous
or non-deterministic grammars can require exponential time and space to process. Such
badly behaving examples, however, are not generally of practical interest. Usually, non-
determinism in a grammar is local—the parser is “in doubt” only for a few tokens at a
time. Therefore, the current data structure should generally be adequate. On lalr(1)
portions of a grammar, in particular, it is only slightly slower than with the default Bison
parser.

Chapter 5: The Bison Parser Algorithm 77

5.9 Stack Overflow, and How to Avoid It

The Bison parser stack can overflow if too many tokens are shifted and not reduced.
When this happens, the parser function yyparse returns a nonzero value, pausing only to
call yyerror to report the overflow.

Because Bison parsers have growing stacks, hitting the upper limit usually results
from using a right recursion instead of a left recursion, See 〈undefined〉 [Recursive Rules],
page 〈undefined〉.

By defining the macro YYMAXDEPTH, you can control how deep the parser stack can
become before a stack overflow occurs. Define the macro with a value that is an integer.
This value is the maximum number of tokens that can be shifted (and not reduced) before
overflow. It must be a constant expression whose value is known at compile time.

The stack space allowed is not necessarily allocated. If you specify a large value for
YYMAXDEPTH, the parser actually allocates a small stack at first, and then makes it bigger by
stages as needed. This increasing allocation happens automatically and silently. Therefore,
you do not need to make YYMAXDEPTH painfully small merely to save space for ordinary
inputs that do not need much stack.

The default value of YYMAXDEPTH, if you do not define it, is 10000.
You can control how much stack is allocated initially by defining the macro YYINITDEPTH.

This value too must be a compile-time constant integer. The default is 200.
Because of semantical differences between C and C++, the lalr(1) parsers in C produced

by Bison by compiled as C++ cannot grow. In this precise case (compiling a C parser as
C++) you are suggested to grow YYINITDEPTH. In the near future, a C++ output output will
be provided which addresses this issue.

78 Bison 1.875

Chapter 6: Error Recovery 79

6 Error Recovery

It is not usually acceptable to have a program terminate on a syntax error. For example,
a compiler should recover sufficiently to parse the rest of the input file and check it for
errors; a calculator should accept another expression.

In a simple interactive command parser where each input is one line, it may be sufficient
to allow yyparse to return 1 on error and have the caller ignore the rest of the input line
when that happens (and then call yyparse again). But this is inadequate for a compiler,
because it forgets all the syntactic context leading up to the error. A syntax error deep
within a function in the compiler input should not cause the compiler to treat the following
line like the beginning of a source file.

You can define how to recover from a syntax error by writing rules to recognize the
special token error. This is a terminal symbol that is always defined (you need not declare
it) and reserved for error handling. The Bison parser generates an error token whenever
a syntax error happens; if you have provided a rule to recognize this token in the current
context, the parse can continue.

For example:

stmnts: /* empty string */
| stmnts ’\n’
| stmnts exp ’\n’
| stmnts error ’\n’

The fourth rule in this example says that an error followed by a newline makes a valid
addition to any stmnts.

What happens if a syntax error occurs in the middle of an exp? The error recovery rule,
interpreted strictly, applies to the precise sequence of a stmnts, an error and a newline. If
an error occurs in the middle of an exp, there will probably be some additional tokens and
subexpressions on the stack after the last stmnts, and there will be tokens to read before
the next newline. So the rule is not applicable in the ordinary way.

But Bison can force the situation to fit the rule, by discarding part of the semantic context
and part of the input. First it discards states and objects from the stack until it gets back
to a state in which the error token is acceptable. (This means that the subexpressions
already parsed are discarded, back to the last complete stmnts.) At this point the error
token can be shifted. Then, if the old look-ahead token is not acceptable to be shifted next,
the parser reads tokens and discards them until it finds a token which is acceptable. In this
example, Bison reads and discards input until the next newline so that the fourth rule can
apply. Note that discarded symbols are possible sources of memory leaks, see 〈undefined〉
[Freeing Discarded Symbols], page 〈undefined〉, for a means to reclaim this memory.

The choice of error rules in the grammar is a choice of strategies for error recovery. A
simple and useful strategy is simply to skip the rest of the current input line or current
statement if an error is detected:

stmnt: error ’;’ /* On error, skip until ’;’ is read. */

It is also useful to recover to the matching close-delimiter of an opening-delimiter that has
already been parsed. Otherwise the close-delimiter will probably appear to be unmatched,
and generate another, spurious error message:

80 Bison 1.875

primary: ’(’ expr ’)’
| ’(’ error ’)’
...
;

Error recovery strategies are necessarily guesses. When they guess wrong, one syntax
error often leads to another. In the above example, the error recovery rule guesses that an
error is due to bad input within one stmnt. Suppose that instead a spurious semicolon is
inserted in the middle of a valid stmnt. After the error recovery rule recovers from the first
error, another syntax error will be found straightaway, since the text following the spurious
semicolon is also an invalid stmnt.

To prevent an outpouring of error messages, the parser will output no error message for
another syntax error that happens shortly after the first; only after three consecutive input
tokens have been successfully shifted will error messages resume.

Note that rules which accept the error token may have actions, just as any other rules
can.

You can make error messages resume immediately by using the macro yyerrok in an
action. If you do this in the error rule’s action, no error messages will be suppressed. This
macro requires no arguments; ‘yyerrok;’ is a valid C statement.

The previous look-ahead token is reanalyzed immediately after an error. If this is unac-
ceptable, then the macro yyclearin may be used to clear this token. Write the statement
‘yyclearin;’ in the error rule’s action.

For example, suppose that on a syntax error, an error handling routine is called that
advances the input stream to some point where parsing should once again commence. The
next symbol returned by the lexical scanner is probably correct. The previous look-ahead
token ought to be discarded with ‘yyclearin;’.

The macro YYRECOVERING stands for an expression that has the value 1 when the parser
is recovering from a syntax error, and 0 the rest of the time. A value of 1 indicates that
error messages are currently suppressed for new syntax errors.

Chapter 7: Handling Context Dependencies 81

7 Handling Context Dependencies

The Bison paradigm is to parse tokens first, then group them into larger syntactic units.
In many languages, the meaning of a token is affected by its context. Although this violates
the Bison paradigm, certain techniques (known as kludges) may enable you to write Bison
parsers for such languages.

(Actually, “kludge” means any technique that gets its job done but is neither clean nor
robust.)

7.1 Semantic Info in Token Types

The C language has a context dependency: the way an identifier is used depends on
what its current meaning is. For example, consider this:

foo (x);

This looks like a function call statement, but if foo is a typedef name, then this is
actually a declaration of x. How can a Bison parser for C decide how to parse this input?

The method used in gnu C is to have two different token types, IDENTIFIER and
TYPENAME. When yylex finds an identifier, it looks up the current declaration of the iden-
tifier in order to decide which token type to return: TYPENAME if the identifier is declared
as a typedef, IDENTIFIER otherwise.

The grammar rules can then express the context dependency by the choice of token type
to recognize. IDENTIFIER is accepted as an expression, but TYPENAME is not. TYPENAME can
start a declaration, but IDENTIFIER cannot. In contexts where the meaning of the identifier
is not significant, such as in declarations that can shadow a typedef name, either TYPENAME
or IDENTIFIER is accepted—there is one rule for each of the two token types.

This technique is simple to use if the decision of which kinds of identifiers to allow is
made at a place close to where the identifier is parsed. But in C this is not always so: C
allows a declaration to redeclare a typedef name provided an explicit type has been specified
earlier:

typedef int foo, bar, lose;
static foo (bar); /* redeclare bar as static variable */
static int foo (lose); /* redeclare foo as function */

Unfortunately, the name being declared is separated from the declaration construct itself
by a complicated syntactic structure—the “declarator”.

As a result, part of the Bison parser for C needs to be duplicated, with all the nonterminal
names changed: once for parsing a declaration in which a typedef name can be redefined,
and once for parsing a declaration in which that can’t be done. Here is a part of the
duplication, with actions omitted for brevity:

initdcl:
declarator maybeasm ’=’
init

| declarator maybeasm
;

82 Bison 1.875

notype_initdcl:
notype_declarator maybeasm ’=’
init

| notype_declarator maybeasm
;

Here initdcl can redeclare a typedef name, but notype_initdcl cannot. The distinction
between declarator and notype_declarator is the same sort of thing.

There is some similarity between this technique and a lexical tie-in (described next), in
that information which alters the lexical analysis is changed during parsing by other parts of
the program. The difference is here the information is global, and is used for other purposes
in the program. A true lexical tie-in has a special-purpose flag controlled by the syntactic
context.

7.2 Lexical Tie-ins

One way to handle context-dependency is the lexical tie-in: a flag which is set by Bison
actions, whose purpose is to alter the way tokens are parsed.

For example, suppose we have a language vaguely like C, but with a special construct
‘hex (hex-expr)’. After the keyword hex comes an expression in parentheses in which all
integers are hexadecimal. In particular, the token ‘a1b’ must be treated as an integer rather
than as an identifier if it appears in that context. Here is how you can do it:

%{
int hexflag;
int yylex (void);
void yyerror (char const *);

%}
%%
...

expr: IDENTIFIER
| constant
| HEX ’(’

{ hexflag = 1; }
expr ’)’

{ hexflag = 0;
$$ = $4; }

| expr ’+’ expr
{ $$ = make_sum ($1, $3); }

...
;

constant:
INTEGER

| STRING
;

Here we assume that yylex looks at the value of hexflag; when it is nonzero, all integers
are parsed in hexadecimal, and tokens starting with letters are parsed as integers if possible.

Chapter 7: Handling Context Dependencies 83

The declaration of hexflag shown in the prologue of the parser file is needed to make
it accessible to the actions (see 〈undefined〉 [The Prologue], page 〈undefined〉). You must
also write the code in yylex to obey the flag.

7.3 Lexical Tie-ins and Error Recovery

Lexical tie-ins make strict demands on any error recovery rules you have. See 〈undefined〉
[Error Recovery], page 〈undefined〉.

The reason for this is that the purpose of an error recovery rule is to abort the parsing
of one construct and resume in some larger construct. For example, in C-like languages, a
typical error recovery rule is to skip tokens until the next semicolon, and then start a new
statement, like this:

stmt: expr ’;’
| IF ’(’ expr ’)’ stmt { ... }
...
error ’;’

{ hexflag = 0; }
;

If there is a syntax error in the middle of a ‘hex (expr)’ construct, this error rule will
apply, and then the action for the completed ‘hex (expr)’ will never run. So hexflag
would remain set for the entire rest of the input, or until the next hex keyword, causing
identifiers to be misinterpreted as integers.

To avoid this problem the error recovery rule itself clears hexflag.
There may also be an error recovery rule that works within expressions. For example,

there could be a rule which applies within parentheses and skips to the close-parenthesis:
expr: ...

| ’(’ expr ’)’
{ $$ = $2; }

| ’(’ error ’)’
...

If this rule acts within the hex construct, it is not going to abort that construct (since
it applies to an inner level of parentheses within the construct). Therefore, it should not
clear the flag: the rest of the hex construct should be parsed with the flag still in effect.

What if there is an error recovery rule which might abort out of the hex construct or
might not, depending on circumstances? There is no way you can write the action to
determine whether a hex construct is being aborted or not. So if you are using a lexical
tie-in, you had better make sure your error recovery rules are not of this kind. Each rule
must be such that you can be sure that it always will, or always won’t, have to clear the
flag.

84 Bison 1.875

Chapter 8: Debugging Your Parser 85

8 Debugging Your Parser

Developing a parser can be a challenge, especially if you don’t understand the algorithm
(see 〈undefined〉 [The Bison Parser Algorithm], page 〈undefined〉). Even so, sometimes
a detailed description of the automaton can help (see 〈undefined〉 [Understanding Your
Parser], page 〈undefined〉), or tracing the execution of the parser can give some insight on
why it behaves improperly (see 〈undefined〉 [Tracing Your Parser], page 〈undefined〉).

8.1 Understanding Your Parser

As documented elsewhere (see 〈undefined〉 [The Bison Parser Algorithm], page 〈unde-
fined〉) Bison parsers are shift/reduce automata. In some cases (much more frequent than
one would hope), looking at this automaton is required to tune or simply fix a parser. Bison
provides two different representation of it, either textually or graphically (as a vcg file).

The textual file is generated when the options ‘--report’ or ‘--verbose’ are specified,
see See 〈undefined〉 [Invoking Bison], page 〈undefined〉. Its name is made by removing
‘.tab.c’ or ‘.c’ from the parser output file name, and adding ‘.output’ instead. Therefore,
if the input file is ‘foo.y’, then the parser file is called ‘foo.tab.c’ by default. As a
consequence, the verbose output file is called ‘foo.output’.

The following grammar file, ‘calc.y’, will be used in the sequel:
%token NUM STR
%left ’+’ ’-’
%left ’*’
%%
exp: exp ’+’ exp

| exp ’-’ exp
| exp ’*’ exp
| exp ’/’ exp
| NUM
;

useless: STR;
%%

bison reports:
calc.y: warning: 1 useless nonterminal and 1 useless rule
calc.y:11.1-7: warning: useless nonterminal: useless
calc.y:11.10-12: warning: useless rule: useless: STR
calc.y: conflicts: 7 shift/reduce

When given ‘--report=state’, in addition to ‘calc.tab.c’, it creates a file
‘calc.output’ with contents detailed below. The order of the output and the exact
presentation might vary, but the interpretation is the same.

The first section includes details on conflicts that were solved thanks to precedence
and/or associativity:

Conflict in state 8 between rule 2 and token ’+’ resolved as reduce.
Conflict in state 8 between rule 2 and token ’-’ resolved as reduce.

86 Bison 1.875

Conflict in state 8 between rule 2 and token ’*’ resolved as shift.
. . .
The next section lists states that still have conflicts.

State 8 conflicts: 1 shift/reduce
State 9 conflicts: 1 shift/reduce
State 10 conflicts: 1 shift/reduce
State 11 conflicts: 4 shift/reduce

The next section reports useless tokens, nonterminal and rules. Useless nonterminals and
rules are removed in order to produce a smaller parser, but useless tokens are preserved,
since they might be used by the scanner (note the difference between “useless” and “not
used” below):

Useless nonterminals:
useless

Terminals which are not used:
STR

Useless rules:
#6 useless: STR;

The next section reproduces the exact grammar that Bison used:
Grammar

Number, Line, Rule
0 5 $accept -> exp $end
1 5 exp -> exp ’+’ exp
2 6 exp -> exp ’-’ exp
3 7 exp -> exp ’*’ exp
4 8 exp -> exp ’/’ exp
5 9 exp -> NUM

and reports the uses of the symbols:
Terminals, with rules where they appear

$end (0) 0
’*’ (42) 3
’+’ (43) 1
’-’ (45) 2
’/’ (47) 4
error (256)
NUM (258) 5

Nonterminals, with rules where they appear

$accept (8)
on left: 0

exp (9)

Chapter 8: Debugging Your Parser 87

on left: 1 2 3 4 5, on right: 0 1 2 3 4

Bison then proceeds onto the automaton itself, describing each state with it set of items,
also known as pointed rules. Each item is a production rule together with a point (marked
by ‘.’) that the input cursor.

state 0

$accept -> . exp $ (rule 0)

NUM shift, and go to state 1

exp go to state 2

This reads as follows: “state 0 corresponds to being at the very beginning of the parsing,
in the initial rule, right before the start symbol (here, exp). When the parser returns to
this state right after having reduced a rule that produced an exp, the control flow jumps to
state 2. If there is no such transition on a nonterminal symbol, and the lookahead is a NUM,
then this token is shifted on the parse stack, and the control flow jumps to state 1. Any
other lookahead triggers a syntax error.”

Even though the only active rule in state 0 seems to be rule 0, the report lists NUM as
a lookahead symbol because NUM can be at the beginning of any rule deriving an exp. By
default Bison reports the so-called core or kernel of the item set, but if you want to see
more detail you can invoke bison with ‘--report=itemset’ to list all the items, include
those that can be derived:

state 0

$accept -> . exp $ (rule 0)
exp -> . exp ’+’ exp (rule 1)
exp -> . exp ’-’ exp (rule 2)
exp -> . exp ’*’ exp (rule 3)
exp -> . exp ’/’ exp (rule 4)
exp -> . NUM (rule 5)

NUM shift, and go to state 1

exp go to state 2

In the state 1...
state 1

exp -> NUM . (rule 5)

$default reduce using rule 5 (exp)

the rule 5, ‘exp: NUM;’, is completed. Whatever the lookahead (‘$default’), the parser will
reduce it. If it was coming from state 0, then, after this reduction it will return to state 0,
and will jump to state 2 (‘exp: go to state 2’).

state 2

88 Bison 1.875

$accept -> exp . $ (rule 0)
exp -> exp . ’+’ exp (rule 1)
exp -> exp . ’-’ exp (rule 2)
exp -> exp . ’*’ exp (rule 3)
exp -> exp . ’/’ exp (rule 4)

$ shift, and go to state 3
’+’ shift, and go to state 4
’-’ shift, and go to state 5
’*’ shift, and go to state 6
’/’ shift, and go to state 7

In state 2, the automaton can only shift a symbol. For instance, because of the item ‘exp
-> exp . ’+’ exp’, if the lookahead if ‘+’, it will be shifted on the parse stack, and the
automaton control will jump to state 4, corresponding to the item ‘exp -> exp ’+’ . exp’.
Since there is no default action, any other token than those listed above will trigger a syntax
error.

The state 3 is named the final state, or the accepting state:

state 3

$accept -> exp $. (rule 0)

$default accept

the initial rule is completed (the start symbol and the end of input were read), the parsing
exits successfully.

The interpretation of states 4 to 7 is straightforward, and is left to the reader.

state 4

exp -> exp ’+’ . exp (rule 1)

NUM shift, and go to state 1

exp go to state 8

state 5

exp -> exp ’-’ . exp (rule 2)

NUM shift, and go to state 1

exp go to state 9

state 6

exp -> exp ’*’ . exp (rule 3)

Chapter 8: Debugging Your Parser 89

NUM shift, and go to state 1

exp go to state 10

state 7

exp -> exp ’/’ . exp (rule 4)

NUM shift, and go to state 1

exp go to state 11

As was announced in beginning of the report, ‘State 8 conflicts: 1 shift/reduce’:

state 8

exp -> exp . ’+’ exp (rule 1)
exp -> exp ’+’ exp . (rule 1)
exp -> exp . ’-’ exp (rule 2)
exp -> exp . ’*’ exp (rule 3)
exp -> exp . ’/’ exp (rule 4)

’*’ shift, and go to state 6
’/’ shift, and go to state 7

’/’ [reduce using rule 1 (exp)]
$default reduce using rule 1 (exp)

Indeed, there are two actions associated to the lookahead ‘/’: either shifting (and going
to state 7), or reducing rule 1. The conflict means that either the grammar is ambiguous, or
the parser lacks information to make the right decision. Indeed the grammar is ambiguous,
as, since we did not specify the precedence of ‘/’, the sentence ‘NUM + NUM / NUM’ can be
parsed as ‘NUM + (NUM / NUM)’, which corresponds to shifting ‘/’, or as ‘(NUM + NUM) / NUM’,
which corresponds to reducing rule 1.

Because in lalr(1) parsing a single decision can be made, Bison arbitrarily chose to
disable the reduction, see 〈undefined〉 [Shift/Reduce Conflicts], page 〈undefined〉. Discarded
actions are reported in between square brackets.

Note that all the previous states had a single possible action: either shifting the next
token and going to the corresponding state, or reducing a single rule. In the other cases,
i.e., when shifting and reducing is possible or when several reductions are possible, the
lookahead is required to select the action. State 8 is one such state: if the lookahead is ‘*’
or ‘/’ then the action is shifting, otherwise the action is reducing rule 1. In other words,
the first two items, corresponding to rule 1, are not eligible when the lookahead is ‘*’, since
we specified that ‘*’ has higher precedence that ‘+’. More generally, some items are eligible
only with some set of possible lookaheads. When run with ‘--report=lookahead’, Bison
specifies these lookaheads:

state 8

90 Bison 1.875

exp -> exp . ’+’ exp [$, ’+’, ’-’, ’/’] (rule 1)
exp -> exp ’+’ exp . [$, ’+’, ’-’, ’/’] (rule 1)
exp -> exp . ’-’ exp (rule 2)
exp -> exp . ’*’ exp (rule 3)
exp -> exp . ’/’ exp (rule 4)

’*’ shift, and go to state 6
’/’ shift, and go to state 7

’/’ [reduce using rule 1 (exp)]
$default reduce using rule 1 (exp)

The remaining states are similar:

state 9

exp -> exp . ’+’ exp (rule 1)
exp -> exp . ’-’ exp (rule 2)
exp -> exp ’-’ exp . (rule 2)
exp -> exp . ’*’ exp (rule 3)
exp -> exp . ’/’ exp (rule 4)

’*’ shift, and go to state 6
’/’ shift, and go to state 7

’/’ [reduce using rule 2 (exp)]
$default reduce using rule 2 (exp)

state 10

exp -> exp . ’+’ exp (rule 1)
exp -> exp . ’-’ exp (rule 2)
exp -> exp . ’*’ exp (rule 3)
exp -> exp ’*’ exp . (rule 3)
exp -> exp . ’/’ exp (rule 4)

’/’ shift, and go to state 7

’/’ [reduce using rule 3 (exp)]
$default reduce using rule 3 (exp)

state 11

exp -> exp . ’+’ exp (rule 1)
exp -> exp . ’-’ exp (rule 2)
exp -> exp . ’*’ exp (rule 3)
exp -> exp . ’/’ exp (rule 4)
exp -> exp ’/’ exp . (rule 4)

Chapter 8: Debugging Your Parser 91

’+’ shift, and go to state 4
’-’ shift, and go to state 5
’*’ shift, and go to state 6
’/’ shift, and go to state 7

’+’ [reduce using rule 4 (exp)]
’-’ [reduce using rule 4 (exp)]
’*’ [reduce using rule 4 (exp)]
’/’ [reduce using rule 4 (exp)]
$default reduce using rule 4 (exp)

Observe that state 11 contains conflicts due to the lack of precedence of ‘/’ wrt ‘+’, ‘-’, and
‘*’, but also because the associativity of ‘/’ is not specified.

8.2 Tracing Your Parser

If a Bison grammar compiles properly but doesn’t do what you want when it runs, the
yydebug parser-trace feature can help you figure out why.

There are several means to enable compilation of trace facilities:

the macro YYDEBUG
Define the macro YYDEBUG to a nonzero value when you compile the parser.
This is compliant with posix Yacc. You could use ‘-DYYDEBUG=1’ as a compiler
option or you could put ‘#define YYDEBUG 1’ in the prologue of the grammar
file (see 〈undefined〉 [The Prologue], page 〈undefined〉).

the option ‘-t’, ‘--debug’
Use the ‘-t’ option when you run Bison (see 〈undefined〉 [Invoking Bison],
page 〈undefined〉). This is posix compliant too.

the directive ‘%debug’
Add the %debug directive (see 〈undefined〉 [Bison Declaration Summary],
page 〈undefined〉). This is a Bison extension, which will prove useful when
Bison will output parsers for languages that don’t use a preprocessor. Unless
posix and Yacc portability matter to you, this is the preferred solution.

We suggest that you always enable the debug option so that debugging is always possible.
The trace facility outputs messages with macro calls of the form YYFPRINTF (stderr,

format, args) where format and args are the usual printf format and arguments. If you
define YYDEBUG to a nonzero value but do not define YYFPRINTF, <stdio.h> is automatically
included and YYPRINTF is defined to fprintf.

Once you have compiled the program with trace facilities, the way to request a trace is
to store a nonzero value in the variable yydebug. You can do this by making the C code do
it (in main, perhaps), or you can alter the value with a C debugger.

Each step taken by the parser when yydebug is nonzero produces a line or two of trace
information, written on stderr. The trace messages tell you these things:
• Each time the parser calls yylex, what kind of token was read.

92 Bison 1.875

• Each time a token is shifted, the depth and complete contents of the state stack (see
〈undefined〉 [Parser States], page 〈undefined〉).

• Each time a rule is reduced, which rule it is, and the complete contents of the state
stack afterward.

To make sense of this information, it helps to refer to the listing file produced by the
Bison ‘-v’ option (see 〈undefined〉 [Invoking Bison], page 〈undefined〉). This file shows the
meaning of each state in terms of positions in various rules, and also what each state will
do with each possible input token. As you read the successive trace messages, you can see
that the parser is functioning according to its specification in the listing file. Eventually
you will arrive at the place where something undesirable happens, and you will see which
parts of the grammar are to blame.

The parser file is a C program and you can use C debuggers on it, but it’s not easy to
interpret what it is doing. The parser function is a finite-state machine interpreter, and
aside from the actions it executes the same code over and over. Only the values of variables
show where in the grammar it is working.

The debugging information normally gives the token type of each token read, but not
its semantic value. You can optionally define a macro named YYPRINT to provide a way to
print the value. If you define YYPRINT, it should take three arguments. The parser will pass
a standard I/O stream, the numeric code for the token type, and the token value (from
yylval).

Here is an example of YYPRINT suitable for the multi-function calculator (see 〈undefined〉
[Declarations for mfcalc], page 〈undefined〉):

%{
static void print_token_value (FILE *, int, YYSTYPE);
#define YYPRINT(file, type, value) print_token_value (file, type, value)

%}

... %% ... %% ...

static void
print_token_value (FILE *file, int type, YYSTYPE value)
{
if (type == VAR)
fprintf (file, "%s", value.tptr->name);

else if (type == NUM)
fprintf (file, "%d", value.val);

}

Chapter 9: Invoking Bison 93

9 Invoking Bison

The usual way to invoke Bison is as follows:
bison infile

Here infile is the grammar file name, which usually ends in ‘.y’. The parser file’s
name is made by replacing the ‘.y’ with ‘.tab.c’. Thus, the ‘bison foo.y’ filename yields
‘foo.tab.c’, and the ‘bison hack/foo.y’ filename yields ‘hack/foo.tab.c’. It’s also pos-
sible, in case you are writing C++ code instead of C in your grammar file, to name it
‘foo.ypp’ or ‘foo.y++’. Then, the output files will take an extension like the given one as
input (respectively ‘foo.tab.cpp’ and ‘foo.tab.c++’). This feature takes effect with all
options that manipulate filenames like ‘-o’ or ‘-d’.

For example :
bison -d infile.yxx

will produce ‘infile.tab.cxx’ and ‘infile.tab.hxx’, and
bison -d -o output.c++ infile.y

will produce ‘output.c++’ and ‘outfile.h++’.
For compatibility with posix, the standard Bison distribution also contains a shell script

called yacc that invokes Bison with the ‘-y’ option.

9.1 Bison Options

Bison supports both traditional single-letter options and mnemonic long option names.
Long option names are indicated with ‘--’ instead of ‘-’. Abbreviations for option names
are allowed as long as they are unique. When a long option takes an argument, like
‘--file-prefix’, connect the option name and the argument with ‘=’.

Here is a list of options that can be used with Bison, alphabetized by short option. It is
followed by a cross key alphabetized by long option.
Operations modes:

‘-h’
‘--help’ Print a summary of the command-line options to Bison and exit.

‘-V’
‘--version’

Print the version number of Bison and exit.
‘-y’
‘--yacc’ Equivalent to ‘-o y.tab.c’; the parser output file is called ‘y.tab.c’, and the

other outputs are called ‘y.output’ and ‘y.tab.h’. The purpose of this option
is to imitate Yacc’s output file name conventions. Thus, the following shell
script can substitute for Yacc, and the Bison distribution contains such a script
for compatibility with posix:

#! /bin/sh
bison -y "$¨

Tuning the parser:

94 Bison 1.875

‘-S file ’
‘--skeleton=file ’

Specify the skeleton to use. You probably don’t need this option unless you are
developing Bison.

‘-t’
‘--debug’ In the parser file, define the macro YYDEBUG to 1 if it is not already defined,

so that the debugging facilities are compiled. See 〈undefined〉 [Tracing Your
Parser], page 〈undefined〉.

‘--locations’
Pretend that %locations was specified. See 〈undefined〉 [Decl Summary],
page 〈undefined〉.

‘-p prefix ’
‘--name-prefix=prefix ’

Pretend that %name-prefix="prefix" was specified. See 〈undefined〉 [Decl
Summary], page 〈undefined〉.

‘-l’
‘--no-lines’

Don’t put any #line preprocessor commands in the parser file. Ordinarily
Bison puts them in the parser file so that the C compiler and debuggers will
associate errors with your source file, the grammar file. This option causes them
to associate errors with the parser file, treating it as an independent source file
in its own right.

‘-n’
‘--no-parser’

Pretend that %no-parser was specified. See 〈undefined〉 [Decl Summary],
page 〈undefined〉.

‘-k’
‘--token-table’

Pretend that %token-table was specified. See 〈undefined〉 [Decl Summary],
page 〈undefined〉.

Adjust the output:

‘-d’
‘--defines’

Pretend that %defines was specified, i.e., write an extra output file containing
macro definitions for the token type names defined in the grammar and the
semantic value type YYSTYPE, as well as a few extern variable declarations.
See 〈undefined〉 [Decl Summary], page 〈undefined〉.

‘--defines=defines-file ’
Same as above, but save in the file defines-file.

‘-b file-prefix ’
‘--file-prefix=prefix ’

Pretend that %verbose was specified, i.e, specify prefix to use for all Bison
output file names. See 〈undefined〉 [Decl Summary], page 〈undefined〉.

Chapter 9: Invoking Bison 95

‘-r things ’
‘--report=things ’

Write an extra output file containing verbose description of the comma sepa-
rated list of things among:

state Description of the grammar, conflicts (resolved and unresolved),
and lalr automaton.

lookahead
Implies state and augments the description of the automaton with
each rule’s lookahead set.

itemset Implies state and augments the description of the automaton with
the full set of items for each state, instead of its core only.

For instance, on the following grammar

‘-v’
‘--verbose’

Pretend that %verbose was specified, i.e, write an extra output file containing
verbose descriptions of the grammar and parser. See 〈undefined〉 [Decl Sum-
mary], page 〈undefined〉.

‘-o filename ’
‘--output=filename ’

Specify the filename for the parser file.
The other output files’ names are constructed from filename as described under
the ‘-v’ and ‘-d’ options.

‘-g’ Output a vcg definition of the lalr(1) grammar automaton computed by
Bison. If the grammar file is ‘foo.y’, the vcg output file will be ‘foo.vcg’.

‘--graph=graph-file ’
The behavior of –graph is the same than ‘-g’. The only difference is that it has
an optional argument which is the name of the output graph filename.

9.2 Option Cross Key

Here is a list of options, alphabetized by long option, to help you find the corresponding
short option.
--debug . -t
--defines . -d
--file-prefix . -b
--graph . -g
--help . -h
--name-prefix . -p
--no-lines . -l
--no-parser . -n
--output . -o
--token-table . -k
--verbose . -v

96 Bison 1.875

--version . -V
--yacc . -y

9.3 Yacc Library

The Yacc library contains default implementations of the yyerror and main functions.
These default implementations are normally not useful, but posix requires them. To use the
Yacc library, link your program with the ‘-ly’ option. Note that Bison’s implementation
of the Yacc library is distributed under the terms of the gnu General Public License (see
〈undefined〉 [Copying], page 〈undefined〉).

If you use the Yacc library’s yyerror function, you should declare yyerror as follows:
int yyerror (char const *);

Bison ignores the int value returned by this yyerror. If you use the Yacc library’s main
function, your yyparse function should have the following type signature:

int yyparse (void);

Chapter 10: Frequently Asked Questions 97

10 Frequently Asked Questions

Several questions about Bison come up occasionally. Here some of them are addressed.

10.1 Parser Stack Overflow

My parser returns with error with a ‘parser stack overflow’
message. What can I do?

This question is already addressed elsewhere, See 〈undefined〉 [Recursive Rules],
page 〈undefined〉.

98 Bison 1.875

Appendix A: Bison Symbols 99

Appendix A Bison Symbols

[Variable]@$
In an action, the location of the left-hand side of the rule. See 〈undefined〉 [Locations
Overview], page 〈undefined〉.

[Variable]@n
In an action, the location of the n-th symbol of the right-hand side of the rule. See
〈undefined〉 [Locations Overview], page 〈undefined〉.

[Variable]$$
In an action, the semantic value of the left-hand side of the rule. See 〈undefined〉
[Actions], page 〈undefined〉.

[Variable]$n
In an action, the semantic value of the n-th symbol of the right-hand side of the rule.
See 〈undefined〉 [Actions], page 〈undefined〉.

[Symbol]$accept
The predefined nonterminal whose only rule is ‘$accept: start $end’, where start
is the start symbol. See 〈undefined〉 [The Start-Symbol], page 〈undefined〉. It cannot
be used in the grammar.

[Symbol]$end
The predefined token marking the end of the token stream. It cannot be used in the
grammar.

[Symbol]$undefined
The predefined token onto which all undefined values returned by yylex are mapped.
It cannot be used in the grammar, rather, use error.

[Symbol]error
A token name reserved for error recovery. This token may be used in grammar
rules so as to allow the Bison parser to recognize an error in the grammar without
halting the process. In effect, a sentence containing an error may be recognized as
valid. On a syntax error, the token error becomes the current look-ahead token.
Actions corresponding to error are then executed, and the look-ahead token is reset
to the token that originally caused the violation. See 〈undefined〉 [Error Recovery],
page 〈undefined〉.

[Macro]YYABORT
Macro to pretend that an unrecoverable syntax error has occurred, by making yyparse
return 1 immediately. The error reporting function yyerror is not called. See 〈un-
defined〉 [The Parser Function yyparse], page 〈undefined〉.

100 Bison 1.875

[Macro]YYACCEPT
Macro to pretend that a complete utterance of the language has been read, by mak-
ing yyparse return 0 immediately. See 〈undefined〉 [The Parser Function yyparse],
page 〈undefined〉.

[Macro]YYBACKUP
Macro to discard a value from the parser stack and fake a look-ahead token. See
〈undefined〉 [Special Features for Use in Actions], page 〈undefined〉.

[Macro]YYDEBUG
Macro to define to equip the parser with tracing code. See 〈undefined〉 [Tracing Your
Parser], page 〈undefined〉.

[Macro]YYERROR
Macro to pretend that a syntax error has just been detected: call yyerror and then
perform normal error recovery if possible (see 〈undefined〉 [Error Recovery], page 〈un-
defined〉), or (if recovery is impossible) make yyparse return 1. See 〈undefined〉 [Error
Recovery], page 〈undefined〉.

[Macro]YYERROR VERBOSE
An obsolete macro that you define with #define in the prologue to request verbose,
specific error message strings when yyerror is called. It doesn’t matter what defini-
tion you use for YYERROR_VERBOSE, just whether you define it. Using %error-verbose
is preferred.

[Macro]YYINITDEPTH
Macro for specifying the initial size of the parser stack. See 〈undefined〉 [Stack Over-
flow], page 〈undefined〉.

[Macro]YYLEX PARAM
An obsolete macro for specifying an extra argument (or list of extra arguments) for
yyparse to pass to yylex. he use of this macro is deprecated, and is supported
only for Yacc like parsers. See 〈undefined〉 [Calling Conventions for Pure Parsers],
page 〈undefined〉.

[Type]YYLTYPE
Data type of yylloc; by default, a structure with four members. See 〈undefined〉
[Data Types of Locations], page 〈undefined〉.

[Macro]YYMAXDEPTH
Macro for specifying the maximum size of the parser stack. See 〈undefined〉 [Stack
Overflow], page 〈undefined〉.

[Macro]YYPARSE PARAM
An obsolete macro for specifying the name of a parameter that yyparse should accept.
The use of this macro is deprecated, and is supported only for Yacc like parsers. See
〈undefined〉 [Calling Conventions for Pure Parsers], page 〈undefined〉.

Appendix A: Bison Symbols 101

[Macro]YYRECOVERING
Macro whose value indicates whether the parser is recovering from a syntax error.
See 〈undefined〉 [Special Features for Use in Actions], page 〈undefined〉.

[Macro]YYSTACK USE ALLOCA
Macro used to control the use of alloca. If defined to ‘0’, the parser will not use
alloca but malloc when trying to grow its internal stacks. Do not define YYSTACK_
USE_ALLOCA to anything else.

[Type]YYSTYPE
Data type of semantic values; int by default. See 〈undefined〉 [Data Types of Semantic
Values], page 〈undefined〉.

[Variable]yychar
External integer variable that contains the integer value of the current look-ahead
token. (In a pure parser, it is a local variable within yyparse.) Error-recovery
rule actions may examine this variable. See 〈undefined〉 [Special Features for Use in
Actions], page 〈undefined〉.

[Variable]yyclearin
Macro used in error-recovery rule actions. It clears the previous look-ahead token.
See 〈undefined〉 [Error Recovery], page 〈undefined〉.

[Variable]yydebug
External integer variable set to zero by default. If yydebug is given a nonzero value,
the parser will output information on input symbols and parser action. See 〈unde-
fined〉 [Tracing Your Parser], page 〈undefined〉.

[Macro]yyerrok
Macro to cause parser to recover immediately to its normal mode after a syntax error.
See 〈undefined〉 [Error Recovery], page 〈undefined〉.

[Function]yyerror
User-supplied function to be called by yyparse on error. See 〈undefined〉 [The Error
Reporting Function yyerror], page 〈undefined〉.

[Function]yylex
User-supplied lexical analyzer function, called with no arguments to get the next
token. See 〈undefined〉 [The Lexical Analyzer Function yylex], page 〈undefined〉.

[Variable]yylval
External variable in which yylex should place the semantic value associated with a
token. (In a pure parser, it is a local variable within yyparse, and its address is
passed to yylex.) See 〈undefined〉 [Semantic Values of Tokens], page 〈undefined〉.

102 Bison 1.875

[Variable]yylloc
External variable in which yylex should place the line and column numbers associated
with a token. (In a pure parser, it is a local variable within yyparse, and its address
is passed to yylex.) You can ignore this variable if you don’t use the ‘@’ feature in the
grammar actions. See 〈undefined〉 [Textual Positions of Tokens], page 〈undefined〉.

[Variable]yynerrs
Global variable which Bison increments each time there is a syntax error. (In a pure
parser, it is a local variable within yyparse.) See 〈undefined〉 [The Error Reporting
Function yyerror], page 〈undefined〉.

[Function]yyparse
The parser function produced by Bison; call this function to start parsing. See 〈un-
defined〉 [The Parser Function yyparse], page 〈undefined〉.

[Directive]%debug
Equip the parser for debugging. See 〈undefined〉 [Decl Summary], page 〈undefined〉.

[Directive]%defines
Bison declaration to create a header file meant for the scanner. See 〈undefined〉 [Decl
Summary], page 〈undefined〉.

[Directive]%destructor
Specifying how the parser should reclaim the memory associated to discarded symbols.
See 〈undefined〉 [Freeing Discarded Symbols], page 〈undefined〉.

[Directive]%dprec
Bison declaration to assign a precedence to a rule that is used at parse time to resolve
reduce/reduce conflicts. See 〈undefined〉 [Writing glr Parsers], page 〈undefined〉.

[Directive]%error-verbose
Bison declaration to request verbose, specific error message strings when yyerror is
called.

[Directive]%file-prefix="prefix"
Bison declaration to set the prefix of the output files. See 〈undefined〉 [Decl Summary],
page 〈undefined〉.

[Directive]%glr-parser
Bison declaration to produce a glr parser. See 〈undefined〉 [Writing glr Parsers],
page 〈undefined〉.

[Directive]%left
Bison declaration to assign left associativity to token(s). See 〈undefined〉 [Operator
Precedence], page 〈undefined〉.

Appendix A: Bison Symbols 103

[Directive]%merge
Bison declaration to assign a merging function to a rule. If there is a reduce/reduce
conflict with a rule having the same merging function, the function is applied to the
two semantic values to get a single result. See 〈undefined〉 [Writing glr Parsers],
page 〈undefined〉.

[Directive]%name-prefix="prefix"
Bison declaration to rename the external symbols. See 〈undefined〉 [Decl Summary],
page 〈undefined〉.

[Directive]%no-lines
Bison declaration to avoid generating #line directives in the parser file. See 〈unde-
fined〉 [Decl Summary], page 〈undefined〉.

[Directive]%nonassoc
Bison declaration to assign non-associativity to token(s). See 〈undefined〉 [Operator
Precedence], page 〈undefined〉.

[Directive]%output="filename"
Bison declaration to set the name of the parser file. See 〈undefined〉 [Decl Summary],
page 〈undefined〉.

[Directive]%prec
Bison declaration to assign a precedence to a specific rule. See 〈undefined〉 [Context-
Dependent Precedence], page 〈undefined〉.

[Directive]%pure-parser
Bison declaration to request a pure (reentrant) parser. See 〈undefined〉 [A Pure
(Reentrant) Parser], page 〈undefined〉.

[Directive]%right
Bison declaration to assign right associativity to token(s). See 〈undefined〉 [Operator
Precedence], page 〈undefined〉.

[Directive]%start
Bison declaration to specify the start symbol. See 〈undefined〉 [The Start-Symbol],
page 〈undefined〉.

[Directive]%token
Bison declaration to declare token(s) without specifying precedence. See 〈undefined〉
[Token Type Names], page 〈undefined〉.

[Directive]%token-table
Bison declaration to include a token name table in the parser file. See 〈undefined〉
[Decl Summary], page 〈undefined〉.

104 Bison 1.875

[Directive]%type
Bison declaration to declare nonterminals. See 〈undefined〉 [Nonterminal Symbols],
page 〈undefined〉.

[Directive]%union
Bison declaration to specify several possible data types for semantic values. See 〈un-
defined〉 [The Collection of Value Types], page 〈undefined〉.

These are the punctuation and delimiters used in Bison input:

[Delimiter]%%
Delimiter used to separate the grammar rule section from the Bison declarations
section or the epilogue. See 〈undefined〉 [The Overall Layout of a Bison Grammar],
page 〈undefined〉.

[Delimiter]%{code%}
All code listed between ‘%{’ and ‘%}’ is copied directly to the output file uninterpreted.
Such code forms the prologue of the input file. See 〈undefined〉 [Outline of a Bison
Grammar], page 〈undefined〉.

[Construct]/*. . . */
Comment delimiters, as in C.

[Delimiter]:
Separates a rule’s result from its components. See 〈undefined〉 [Syntax of Grammar
Rules], page 〈undefined〉.

[Delimiter];
Terminates a rule. See 〈undefined〉 [Syntax of Grammar Rules], page 〈undefined〉.

[Delimiter]|
Separates alternate rules for the same result nonterminal. See 〈undefined〉 [Syntax of
Grammar Rules], page 〈undefined〉.

Appendix B: Glossary 105

Appendix B Glossary

Backus-Naur Form (bnf; also called “Backus Normal Form”)
Formal method of specifying context-free grammars originally proposed by John
Backus, and slightly improved by Peter Naur in his 1960-01-02 committee doc-
ument contributing to what became the Algol 60 report. See 〈undefined〉 [Lan-
guages and Context-Free Grammars], page 〈undefined〉.

Context-free grammars
Grammars specified as rules that can be applied regardless of context. Thus, if
there is a rule which says that an integer can be used as an expression, integers
are allowed anywhere an expression is permitted. See 〈undefined〉 [Languages
and Context-Free Grammars], page 〈undefined〉.

Dynamic allocation
Allocation of memory that occurs during execution, rather than at compile time
or on entry to a function.

Empty string
Analogous to the empty set in set theory, the empty string is a character string
of length zero.

Finite-state stack machine
A “machine” that has discrete states in which it is said to exist at each instant
in time. As input to the machine is processed, the machine moves from state
to state as specified by the logic of the machine. In the case of the parser,
the input is the language being parsed, and the states correspond to various
stages in the grammar rules. See 〈undefined〉 [The Bison Parser Algorithm],
page 〈undefined〉.

Generalized lr (glr)
A parsing algorithm that can handle all context-free grammars, including those
that are not lalr(1). It resolves situations that Bison’s usual lalr(1) algo-
rithm cannot by effectively splitting off multiple parsers, trying all possible
parsers, and discarding those that fail in the light of additional right context.
See 〈undefined〉 [Generalized lr Parsing], page 〈undefined〉.

Grouping A language construct that is (in general) grammatically divisible; for example,
‘expression’ or ‘declaration’ in C. See 〈undefined〉 [Languages and Context-Free
Grammars], page 〈undefined〉.

Infix operator
An arithmetic operator that is placed between the operands on which it per-
forms some operation.

Input stream
A continuous flow of data between devices or programs.

Language construct
One of the typical usage schemas of the language. For example, one of the
constructs of the C language is the if statement. See 〈undefined〉 [Languages
and Context-Free Grammars], page 〈undefined〉.

106 Bison 1.875

Left associativity
Operators having left associativity are analyzed from left to right: ‘a+b+c’
first computes ‘a+b’ and then combines with ‘c’. See 〈undefined〉 [Operator
Precedence], page 〈undefined〉.

Left recursion
A rule whose result symbol is also its first component symbol; for example,
‘expseq1 : expseq1 ’,’ exp;’. See 〈undefined〉 [Recursive Rules], page 〈unde-
fined〉.

Left-to-right parsing
Parsing a sentence of a language by analyzing it token by token from left to
right. See 〈undefined〉 [The Bison Parser Algorithm], page 〈undefined〉.

Lexical analyzer (scanner)
A function that reads an input stream and returns tokens one by one. See
〈undefined〉 [The Lexical Analyzer Function yylex], page 〈undefined〉.

Lexical tie-in
A flag, set by actions in the grammar rules, which alters the way tokens are
parsed. See 〈undefined〉 [Lexical Tie-ins], page 〈undefined〉.

Literal string token
A token which consists of two or more fixed characters. See 〈undefined〉 [Sym-
bols], page 〈undefined〉.

Look-ahead token
A token already read but not yet shifted. See 〈undefined〉 [Look-Ahead Tokens],
page 〈undefined〉.

lalr(1) The class of context-free grammars that Bison (like most other parser genera-
tors) can handle; a subset of lr(1). See 〈undefined〉 [Mysterious Reduce/Reduce
Conflicts], page 〈undefined〉.

lr(1) The class of context-free grammars in which at most one token of look-ahead
is needed to disambiguate the parsing of any piece of input.

Nonterminal symbol
A grammar symbol standing for a grammatical construct that can be expressed
through rules in terms of smaller constructs; in other words, a construct that
is not a token. See 〈undefined〉 [Symbols], page 〈undefined〉.

Parser A function that recognizes valid sentences of a language by analyzing the syntax
structure of a set of tokens passed to it from a lexical analyzer.

Postfix operator
An arithmetic operator that is placed after the operands upon which it performs
some operation.

Reduction Replacing a string of nonterminals and/or terminals with a single nonterminal,
according to a grammar rule. See 〈undefined〉 [The Bison Parser Algorithm],
page 〈undefined〉.

Appendix B: Glossary 107

Reentrant A reentrant subprogram is a subprogram which can be in invoked any number
of times in parallel, without interference between the various invocations. See
〈undefined〉 [A Pure (Reentrant) Parser], page 〈undefined〉.

Reverse polish notation
A language in which all operators are postfix operators.

Right recursion
A rule whose result symbol is also its last component symbol; for example,
‘expseq1: exp ’,’ expseq1;’. See 〈undefined〉 [Recursive Rules], page 〈unde-
fined〉.

Semantics In computer languages, the semantics are specified by the actions taken for each
instance of the language, i.e., the meaning of each statement. See 〈undefined〉
[Defining Language Semantics], page 〈undefined〉.

Shift A parser is said to shift when it makes the choice of analyzing further input from
the stream rather than reducing immediately some already-recognized rule. See
〈undefined〉 [The Bison Parser Algorithm], page 〈undefined〉.

Single-character literal
A single character that is recognized and interpreted as is. See 〈undefined〉
[From Formal Rules to Bison Input], page 〈undefined〉.

Start symbol
The nonterminal symbol that stands for a complete valid utterance in the lan-
guage being parsed. The start symbol is usually listed as the first nontermi-
nal symbol in a language specification. See 〈undefined〉 [The Start-Symbol],
page 〈undefined〉.

Symbol table
A data structure where symbol names and associated data are stored during
parsing to allow for recognition and use of existing information in repeated uses
of a symbol. See 〈undefined〉 [Multi-function Calc], page 〈undefined〉.

Syntax error
An error encountered during parsing of an input stream due to invalid syntax.
See 〈undefined〉 [Error Recovery], page 〈undefined〉.

Token A basic, grammatically indivisible unit of a language. The symbol that describes
a token in the grammar is a terminal symbol. The input of the Bison parser
is a stream of tokens which comes from the lexical analyzer. See 〈undefined〉
[Symbols], page 〈undefined〉.

Terminal symbol
A grammar symbol that has no rules in the grammar and therefore is gram-
matically indivisible. The piece of text it represents is a token. See 〈undefined〉
[Languages and Context-Free Grammars], page 〈undefined〉.

108 Bison 1.875

Appendix C: Copying This Manual 109

Appendix C Copying This Manual

C.1 GNU Free Documentation License

Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related

110 Bison 1.875

matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, sgml or xml using a publicly
available dtd, and standard-conforming simple html, PostScript or pdf designed for
human modification. Examples of transparent image formats include png, xcf and
jpg. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, sgml or xml for which the dtd and/or processing
tools are not generally available, and the machine-generated html, PostScript or pdf
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

Appendix C: Copying This Manual 111

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

112 Bison 1.875

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at

Appendix C: Copying This Manual 113

your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.
You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

114 Bison 1.875

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included an aggregate, this License does not apply to the other works
in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warrany Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix C: Copying This Manual 115

C.1.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

116 Bison 1.875

Index 117

Index

(Index is nonexistent)

118 Bison 1.875

